Asteroid: the PyTorch-based audio source separation toolkit for researchers

This paper describes Asteroid, the PyTorch-based audio source separation toolkit for researchers. Inspired by the most successful neural source separation systems, it provides all neural building blocks required to build such a system. To improve reproducibility, Kaldi-style recipes on common audio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Pariente, Manuel, Cornell, Samuele, Cosentino, Joris, Sivasankaran, Sunit, Tzinis, Efthymios, Heitkaemper, Jens, Olvera, Michel, Fabian-Robert Stöter, Hu, Mathieu, Martín-Doñas, Juan M, Ditter, David, Frank, Ariel, Deleforge, Antoine, Vincent, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes Asteroid, the PyTorch-based audio source separation toolkit for researchers. Inspired by the most successful neural source separation systems, it provides all neural building blocks required to build such a system. To improve reproducibility, Kaldi-style recipes on common audio source separation datasets are also provided. This paper describes the software architecture of Asteroid and its most important features. By showing experimental results obtained with Asteroid's recipes, we show that our implementations are at least on par with most results reported in reference papers. The toolkit is publicly available at https://github.com/mpariente/asteroid .
ISSN:2331-8422