State and fault estimation for nonlinear recurrent neural network systems: Experimental testing on a three‐tank system

An observer is presented for the simultaneous estimation of the system state and actuator and sensor faults of a discrete recurrent neural network (RNN) system. The presented approach enables disturbance attenuation and guarantees observer convergence. First, the discrete RNN is converted to a discr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2020-06, Vol.98 (6), p.1328-1338
Hauptverfasser: Zhang, Xiaoxiao, Feng, Xuexin, Mu, Zonglei, Wang, Youqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An observer is presented for the simultaneous estimation of the system state and actuator and sensor faults of a discrete recurrent neural network (RNN) system. The presented approach enables disturbance attenuation and guarantees observer convergence. First, the discrete RNN is converted to a discrete linear parameter varying (LPV) model. Then, the LPV model is further transformed into a descriptor system by extending the system state and sensor fault. Next, an H∞ observer is presented for the simultaneous estimation of the extended state and actuator fault of the descriptor system. Finally, the problem of observer design is translated into solving a linear matrix inequality. Experimental tests on a three‐tank system have validated the effectiveness and correctness of the presented method.
ISSN:0008-4034
1939-019X
DOI:10.1002/cjce.23714