Atmospheric Origins of Variability in the South Atlantic Meridional Overturning Circulation
Insights from the RAPID–MOCHA observation network in the North Atlantic have motivated a recent focus on the South Atlantic, where water masses are exchanged with neighboring ocean basins. In this study, variability in the South Atlantic meridional overturning circulation (SAMOC) at 34°S is attribut...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2019-03, Vol.32 (5), p.1483-1500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Insights from the RAPID–MOCHA observation network in the North Atlantic have motivated a recent focus on the South Atlantic, where water masses are exchanged with neighboring ocean basins. In this study, variability in the South Atlantic meridional overturning circulation (SAMOC) at 34°S is attributed to global atmospheric forcing using an inverse modeling approach. The sensitivity of the SAMOC to atmospheric state variables is computed with the adjoint of the Massachusetts Institute of Technology general circulation model, which is fit to 20 years of observational data in a dynamically consistent framework. The dynamical pathways highlighted by these sensitivity patterns show that the domain of influence for the SAMOC is broad, covering neighboring ocean basins even on short time scales. This result differs from what has previously been shown in the North Atlantic, where Atlantic meridional overturning circulation (AMOC) variability is largely governed by dynamics confined to that basin. The computed sensitivities are convolved with surface atmospheric state variability from ERA-Interim to attribute the influence of each external forcing variable (e.g., wind stress, precipitation) on the SAMOC from 1992 to 2011. Here, local wind stress perturbations are shown to dominate variability on seasonal time scales while buoyancy forcing plays a minor role, confirming results from past forward perturbation experiments. Interannual variability, however, is shown to have originated from remote locations across the globe, including a nontrivial component originating from the tropical Pacific. The influence of atmospheric forcing emphasizes the importance of continuous widespread observations of the global atmospheric state for attributing observed AMOC variability. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/JCLI-D-18-0311.1 |