Emergence of anomalous dynamics from the underlying singular continuous spectrum in interacting many-body systems

We investigate the dynamical properties of an interacting many-body system with a nontrivial energy potential landscape that may induce a singular continuous single-particle energy spectrum. Focusing on the Aubry-Andre model, whose anomalous transport properties in the presence of interaction was re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-04, Vol.101 (14), p.1, Article 144303
Hauptverfasser: Settino, J., Talarico, N. W., Cosco, F., Plastina, F., Maniscalco, S., Lo Gullo, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the dynamical properties of an interacting many-body system with a nontrivial energy potential landscape that may induce a singular continuous single-particle energy spectrum. Focusing on the Aubry-Andre model, whose anomalous transport properties in the presence of interaction was recently demonstrated experimentally in an ultracold-gas setup, we discuss the anomalous slowing down of the dynamics it exhibits and show that it emerges from the singular-continuous nature of the single-particle excitation spectrum. Our study demonstrates that singular-continuous spectra can be found in interacting systems, unlike previously conjectured by treating the interactions in the mean-field approximation. This, in turns, also highlights the importance of the many-body correlations in giving rise to anomalous dynamics, which, in many-body systems, can result from a nontrivial interplay between geometry and interactions.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.101.144303