Emergence of anomalous dynamics from the underlying singular continuous spectrum in interacting many-body systems
We investigate the dynamical properties of an interacting many-body system with a nontrivial energy potential landscape that may induce a singular continuous single-particle energy spectrum. Focusing on the Aubry-Andre model, whose anomalous transport properties in the presence of interaction was re...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-04, Vol.101 (14), p.1, Article 144303 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the dynamical properties of an interacting many-body system with a nontrivial energy potential landscape that may induce a singular continuous single-particle energy spectrum. Focusing on the Aubry-Andre model, whose anomalous transport properties in the presence of interaction was recently demonstrated experimentally in an ultracold-gas setup, we discuss the anomalous slowing down of the dynamics it exhibits and show that it emerges from the singular-continuous nature of the single-particle excitation spectrum. Our study demonstrates that singular-continuous spectra can be found in interacting systems, unlike previously conjectured by treating the interactions in the mean-field approximation. This, in turns, also highlights the importance of the many-body correlations in giving rise to anomalous dynamics, which, in many-body systems, can result from a nontrivial interplay between geometry and interactions. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.101.144303 |