Guarantees of Fast Band Restricted Thresholding Algorithm for Low-Rank Matrix Recovery Problem
Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT) algorithms for low rank matrix recovery from a sm...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Cui, Angang Sun, Kai Peng, Jigen Zhao, Fujun |
description | Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT) algorithms for low rank matrix recovery from a small number of linear measurements. Characterized via restricted isometry constant, we elaborate the theoretical guarantees in both noise-free and noisy cases. Two thresholding operators are discussed and numerical demonstrations show that FBRT algorithms have better performances than some state-of-the-art methods. Particularly, the running time of FBRT algorithms is much faster than the commonly singular value thresholding algorithms. |
doi_str_mv | 10.1155/2020/9578168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400274376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400274376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-cc6036680444ea0f1ee1d08b079c8b7ad96cdffbf3cd864360aef9991e44f9ae3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AiCs7pzbMEPGpd0qRpe5zDTWGijAmeLGnysnZ2zUw65769GR149JR3-L338v5BcEnwHSFxPIhwhAdZnKSEp0dBj8SchjFhybGvccRCEtH30-DMuSXGEYlJ2gs-JhthRdMCOGQ0GgvXonvRKDQD19pKtqDQvLTgSlOrqlmgYb0wtmrLFdLGoqnZhjPRfKJn4fWP75LmG-wOvVpT1LA6D060qB1cHN5-8DZ-mI8ew-nL5Gk0nIaSkqQNpeSYcp5ixhgIrAkAUTgtcJLJtEiEyrhUWheaSpVyRjkWoLMsI8CYzgTQfnDdzV1b87XxX8-XZmMbvzKPmD82YTThXt12SlrjnAWdr221EnaXE5zvE8z3CeaHBD2_6XhZNUpsq__0VafBG9DiT3tGGaO_VCB6rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400274376</pqid></control><display><type>article</type><title>Guarantees of Fast Band Restricted Thresholding Algorithm for Low-Rank Matrix Recovery Problem</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cui, Angang ; Sun, Kai ; Peng, Jigen ; Zhao, Fujun</creator><contributor>Shi, Junpeng</contributor><creatorcontrib>Cui, Angang ; Sun, Kai ; Peng, Jigen ; Zhao, Fujun ; Shi, Junpeng</creatorcontrib><description>Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT) algorithms for low rank matrix recovery from a small number of linear measurements. Characterized via restricted isometry constant, we elaborate the theoretical guarantees in both noise-free and noisy cases. Two thresholding operators are discussed and numerical demonstrations show that FBRT algorithms have better performances than some state-of-the-art methods. Particularly, the running time of FBRT algorithms is much faster than the commonly singular value thresholding algorithms.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/9578168</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Combinatorial analysis ; Fines & penalties ; Mathematical analysis ; Matrix methods ; Noise ; Optimization ; Recovery</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-14</ispartof><rights>Copyright © 2020 Fujun Zhao et al.</rights><rights>Copyright © 2020 Fujun Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-cc6036680444ea0f1ee1d08b079c8b7ad96cdffbf3cd864360aef9991e44f9ae3</cites><orcidid>0000-0002-7207-3183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Shi, Junpeng</contributor><creatorcontrib>Cui, Angang</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Peng, Jigen</creatorcontrib><creatorcontrib>Zhao, Fujun</creatorcontrib><title>Guarantees of Fast Band Restricted Thresholding Algorithm for Low-Rank Matrix Recovery Problem</title><title>Mathematical problems in engineering</title><description>Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT) algorithms for low rank matrix recovery from a small number of linear measurements. Characterized via restricted isometry constant, we elaborate the theoretical guarantees in both noise-free and noisy cases. Two thresholding operators are discussed and numerical demonstrations show that FBRT algorithms have better performances than some state-of-the-art methods. Particularly, the running time of FBRT algorithms is much faster than the commonly singular value thresholding algorithms.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Fines & penalties</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Noise</subject><subject>Optimization</subject><subject>Recovery</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0EFLwzAUB_AiCs7pzbMEPGpd0qRpe5zDTWGijAmeLGnysnZ2zUw65769GR149JR3-L338v5BcEnwHSFxPIhwhAdZnKSEp0dBj8SchjFhybGvccRCEtH30-DMuSXGEYlJ2gs-JhthRdMCOGQ0GgvXonvRKDQD19pKtqDQvLTgSlOrqlmgYb0wtmrLFdLGoqnZhjPRfKJn4fWP75LmG-wOvVpT1LA6D060qB1cHN5-8DZ-mI8ew-nL5Gk0nIaSkqQNpeSYcp5ixhgIrAkAUTgtcJLJtEiEyrhUWheaSpVyRjkWoLMsI8CYzgTQfnDdzV1b87XxX8-XZmMbvzKPmD82YTThXt12SlrjnAWdr221EnaXE5zvE8z3CeaHBD2_6XhZNUpsq__0VafBG9DiT3tGGaO_VCB6rQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cui, Angang</creator><creator>Sun, Kai</creator><creator>Peng, Jigen</creator><creator>Zhao, Fujun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7207-3183</orcidid></search><sort><creationdate>2020</creationdate><title>Guarantees of Fast Band Restricted Thresholding Algorithm for Low-Rank Matrix Recovery Problem</title><author>Cui, Angang ; Sun, Kai ; Peng, Jigen ; Zhao, Fujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-cc6036680444ea0f1ee1d08b079c8b7ad96cdffbf3cd864360aef9991e44f9ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Fines & penalties</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Noise</topic><topic>Optimization</topic><topic>Recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Angang</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Peng, Jigen</creatorcontrib><creatorcontrib>Zhao, Fujun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Angang</au><au>Sun, Kai</au><au>Peng, Jigen</au><au>Zhao, Fujun</au><au>Shi, Junpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guarantees of Fast Band Restricted Thresholding Algorithm for Low-Rank Matrix Recovery Problem</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT) algorithms for low rank matrix recovery from a small number of linear measurements. Characterized via restricted isometry constant, we elaborate the theoretical guarantees in both noise-free and noisy cases. Two thresholding operators are discussed and numerical demonstrations show that FBRT algorithms have better performances than some state-of-the-art methods. Particularly, the running time of FBRT algorithms is much faster than the commonly singular value thresholding algorithms.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/9578168</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7207-3183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-14 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2400274376 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Combinatorial analysis Fines & penalties Mathematical analysis Matrix methods Noise Optimization Recovery |
title | Guarantees of Fast Band Restricted Thresholding Algorithm for Low-Rank Matrix Recovery Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guarantees%20of%20Fast%20Band%20Restricted%20Thresholding%20Algorithm%20for%20Low-Rank%20Matrix%20Recovery%20Problem&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Cui,%20Angang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/9578168&rft_dat=%3Cproquest_cross%3E2400274376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400274376&rft_id=info:pmid/&rfr_iscdi=true |