Guarantees of Fast Band Restricted Thresholding Algorithm for Low-Rank Matrix Recovery Problem
Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT) algorithms for low rank matrix recovery from a sm...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT) algorithms for low rank matrix recovery from a small number of linear measurements. Characterized via restricted isometry constant, we elaborate the theoretical guarantees in both noise-free and noisy cases. Two thresholding operators are discussed and numerical demonstrations show that FBRT algorithms have better performances than some state-of-the-art methods. Particularly, the running time of FBRT algorithms is much faster than the commonly singular value thresholding algorithms. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/9578168 |