Semiparametric multiparameter regression survival modeling

We consider a log‐linear model for survival data, where both the location and scale parameters depend on covariates, and the baseline hazard function is completely unspecified. This model provides the flexibility needed to capture many interesting features of survival data at a relatively low cost i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2020-06, Vol.47 (2), p.555-571
Hauptverfasser: Burke, Kevin, Eriksson, Frank, Pipper, C. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a log‐linear model for survival data, where both the location and scale parameters depend on covariates, and the baseline hazard function is completely unspecified. This model provides the flexibility needed to capture many interesting features of survival data at a relatively low cost in model complexity. Estimation procedures are developed, and asymptotic properties of the resulting estimators are derived using empirical process theory. Finally, a resampling procedure is developed to estimate the limiting variances of the estimators. The finite sample properties of the estimators are investigated by way of a simulation study, and a practical application to lung cancer data is illustrated.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12416