Monodisperse thiourea functionalized graphene oxide-based PtRunanocatalysts for alcohol oxidation
Addressed herein, thiourea functionalized graphene oxide-based PtRu nanocatalysts (PtRu@T/GO) has been synthesized and characterized by several techniques and performed for methanol oxidation reactions as novel catalysts. In this study, graphene oxide (GO) was functionalized with thiourea (T/GO) in...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-01, Vol.10 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Addressed herein, thiourea functionalized graphene oxide-based PtRu nanocatalysts (PtRu@T/GO) has been synthesized and characterized by several techniques and performed for methanol oxidation reactions as novel catalysts. In this study, graphene oxide (GO) was functionalized with thiourea (T/GO) in order to obtain monothiol functionalized graphene and increase the stability and activity of the nanocatalysts. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), TEM (transmission electron microscopy) and high-resolution transmission electron microscopy (HR-TEM) were used for characterization of the prepared nanocatalysts. The results obtained from these techniques showed that the prepared nanocatalysts were in a highly crystalline form, well dispersed on T/GO, very small in size and colloidally stable. The average size of the synthesized nanocatalysts determined by TEM analysis was found to be 3.86 ± 0.59 nm. With HR-TEM analysis, the atomic lattice fringes of the nanocatalysts were calculated to be 0.23 nm. After the full characterization of the prepared nanocatalysts, they were tried for the methanol oxidation reaction (MOR) and it was observed that 97.3% of the initial performance was maintained even after 1000 cycles while exhibiting great catalytic activity and stability with the help of T/GO. Thus, the arranged nanocatalysts displayed great heterogeneous catalyst characteristics for the methanol oxidation response. |
---|---|
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-020-64885-6 |