Machine learning for predicting landslide risk of Rohingya refugee camp infrastructure

Since the dawn of human civilization, forced migration scenarios have been witnessed in different regions and populations, and is still present in the twenty-first century. The current largest population of stateless refugees in the world, the Rohingya people, reside in the southeastern border regio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information and telecommunication (Print) 2020-04, Vol.4 (2), p.175-198
Hauptverfasser: Ahmed, Nahian, Firoze, Adnan, Rahman, Rashedur M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the dawn of human civilization, forced migration scenarios have been witnessed in different regions and populations, and is still present in the twenty-first century. The current largest population of stateless refugees in the world, the Rohingya people, reside in the southeastern border region of Bangladesh. Due to rapid expansion of refugee camps and lack of suitable locations, a large proportion of the infrastructure are at risk of landslides. This study aims to use machine learning for predicting landslide risk of camp infrastructure using geospatial features. Four supervised classification algorithms have been employed viz., (i) Logistic Regression (LR), (ii) Multi-Layer Perceptron (MLP), (iii) Gradient Boosted Trees (GBT) and (iv) Random Forest (RF) and applied on preprocessing varied versions of features. Results show that RF achieves accuracy of 76.19% and AUC of 0.76 on un-scaled features which is higher than all other algorithms. The applications of the study reside in refugee management and landslide susceptibility mapping of Rohingya camps, which can both potentially save refugee lives and serve as a case study for global applications.
ISSN:2475-1839
2475-1847
DOI:10.1080/24751839.2019.1704114