Barrier Effect on MJO Propagation by the Maritime Continent in the MJO Task Force/GEWEX Atmospheric System Study Models

The simulated Madden–Julian oscillation (MJO) events in 27 general circulation models (GCMs) are identified using an MJO tracking method. The results suggest that the occurrence frequencies of simulated MJO events can represent a model’s ability to simulate several characteristics of the MJO to a ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2019-09, Vol.32 (17), p.5529-5547
Hauptverfasser: Ling, Jian, Zhao, Yuqing, Chen, Guiwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The simulated Madden–Julian oscillation (MJO) events in 27 general circulation models (GCMs) are identified using an MJO tracking method. The results suggest that the occurrence frequencies of simulated MJO events can represent a model’s ability to simulate several characteristics of the MJO to a certain extent during boreal winter, such as propagation range, strength, and termination longitude. All tracked MJO events are classified into those that propagate through the Maritime Continent (MC) (MJO-C) and those that do not (MJO-B), and the weakening and blocking effects on MJO propagation by the MC in GCMs were quantified. In general, if a GCM shows a stronger weakening effect on MJO strength over the MC, it tends to produce a stronger blocking effect on MJO propagation over the MC during boreal winter. The barrier effect of the MC on MJO propagation is exaggerated in most GCMs, while it can be underestimated in some GCMs, especially the coupled GCMs. Strong lower-tropospheric premoistening is identified ahead of the MJO convection center when it is over the central MC for MJO-C but not for MJO-B in most GCMs. Such strong premoistening is mainly attributed to the zonal gradient of lower-tropospheric easterly anomalies within the front Walker cell, which could be a precursor leading to the eastward propagation of MJO convection. In contrast to the observation, the role of the background sea surface temperature and land–sea precipitation contrast in the barrier effect on MJO propagation by the MC is not well captured by most GCMs.
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli-d-18-0870.1