Measure zero stability problem of a generalized quadratic functional equation
Let X be a normed space, Y be a Banach space and f , g : X → Y . In this paper, we investigate the Hyers–Ulam stability theorem for the generalized quadratic functional equation f ( k x + y ) + f ( k x - y ) = 2 k 2 g ( x ) + 2 f ( y ) in a set Ω ⊂ X × X , where k is a positive integer. By the Baire...
Gespeichert in:
Veröffentlicht in: | São Paulo Journal of Mathematical Sciences 2020-06, Vol.14 (1), p.301-311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a normed space,
Y
be a Banach space and
f
,
g
:
X
→
Y
. In this paper, we investigate the Hyers–Ulam stability theorem for the generalized quadratic functional equation
f
(
k
x
+
y
)
+
f
(
k
x
-
y
)
=
2
k
2
g
(
x
)
+
2
f
(
y
)
in a set
Ω
⊂
X
×
X
, where
k
is a positive integer. By the Baire category theorem, we derive some consequences of our main result. |
---|---|
ISSN: | 1982-6907 2316-9028 2306-9028 |
DOI: | 10.1007/s40863-019-00157-0 |