Measure zero stability problem of a generalized quadratic functional equation

Let X be a normed space, Y be a Banach space and f , g : X → Y . In this paper, we investigate the Hyers–Ulam stability theorem for the generalized quadratic functional equation f ( k x + y ) + f ( k x - y ) = 2 k 2 g ( x ) + 2 f ( y ) in a set Ω ⊂ X × X , where k is a positive integer. By the Baire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:São Paulo Journal of Mathematical Sciences 2020-06, Vol.14 (1), p.301-311
Hauptverfasser: EL-Fassi, Iz-iddine, Kabbaj, Samir, Chahbi, Abdellatif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a normed space, Y be a Banach space and f , g : X → Y . In this paper, we investigate the Hyers–Ulam stability theorem for the generalized quadratic functional equation f ( k x + y ) + f ( k x - y ) = 2 k 2 g ( x ) + 2 f ( y ) in a set Ω ⊂ X × X , where k is a positive integer. By the Baire category theorem, we derive some consequences of our main result.
ISSN:1982-6907
2316-9028
2306-9028
DOI:10.1007/s40863-019-00157-0