Uncertainties in GPS-based operational orbit determination: A case study of the Sentinel-1 and Sentinel-2 satellites

The European Space Operations Centre currently operates five Copernicus Sentinel satellites in the framework of Europe's Copernicus Earth observation programme. The routine operations rely on a daily orbit determination, carried out on-ground, consisting in a least-squares fit of a dynamical mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aeronautical journal 2020-06, Vol.124 (1276), p.888-901, Article 0001924020000081
Hauptverfasser: Kuchynka, P., Martin Serrano, M. A., Merz, K., Siminski, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The European Space Operations Centre currently operates five Copernicus Sentinel satellites in the framework of Europe's Copernicus Earth observation programme. The routine operations rely on a daily orbit determination, carried out on-ground, consisting in a least-squares fit of a dynamical model to GPS navigation solutions generated on-board. The purpose of this paper is the estimation of realistic uncertainties on this daily determined state vector. By comparison with the orbit derived by Precise Orbit Determination, we estimate the 1-sigma errors at approximately 0.5m and 0.5mm/s. Non-stationary errors in the navigation solution preclude their characterisation with a constant covariance matrix. Error whitening is achieved by decreasing the signal-to-noise ratio in the errors through the use of underestimated weights on the data. The approach keeps the errors on the derived state vector unchanged and allows the covariance on the state vector to become realistic.
ISSN:0001-9240
2059-6464
DOI:10.1017/aer.2020.8