Some Integral Representations of the pRq(α,β;z) Function

In this article, we determine the Fourier transform ( FT ) representation of p R q ( α , β ; z ) function which generates distributional representation. Further we use this representation to obtain the integral of products of two p R q ( α , β ; z ) functions by employing the Parseval’s identity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2020, Vol.6 (3)
Hauptverfasser: Pal, Ankit, Jana, R. K., Shukla, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title International journal of applied and computational mathematics
container_volume 6
creator Pal, Ankit
Jana, R. K.
Shukla, A. K.
description In this article, we determine the Fourier transform ( FT ) representation of p R q ( α , β ; z ) function which generates distributional representation. Further we use this representation to obtain the integral of products of two p R q ( α , β ; z ) functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of q + 1 R q ( · ) function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial.
doi_str_mv 10.1007/s40819-020-00808-3
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2399317923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399317923</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1423-8e52de5f4cbc270b20b1be017c2b7e2de1934e1ebc72e9bc45e607c0a6953d773</originalsourceid><addsrcrecordid>eNpFkEFKA0EQRRtRMMRcwNWAGwVbq7p60tO4kmA0EBCirpvpTiUmxJnJ9GTjrfQA3sCcyYkRXNWH__gFT4hThCsEMNdRQ4ZWggIJkEEm6UB0FForU2P7h20m3WYEOha9GJcAoFAbUFlH3DyVb5yMiobndb5KJlzVHLlo8mZRFjEpZ0nzykk1WZ9vPy63n99f7xfJcFOEXX0ijmb5KnLv73bFy_DuefAgx4_3o8HtWFaoFcmMUzXldKaDD8qAV-DRM6AJyhtuK7SkGdkHo9j6oFPugwmQ921KU2OoK872u1VdrjccG7csN3XRvnSKrCU0VlFL0Z6KVb0o5lz_UwhuJ8rtRblWlPsV5Yh-AFRiXDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399317923</pqid></control><display><type>article</type><title>Some Integral Representations of the pRq(α,β;z) Function</title><source>Springer Nature - Complete Springer Journals</source><creator>Pal, Ankit ; Jana, R. K. ; Shukla, A. K.</creator><creatorcontrib>Pal, Ankit ; Jana, R. K. ; Shukla, A. K.</creatorcontrib><description>In this article, we determine the Fourier transform ( FT ) representation of p R q ( α , β ; z ) function which generates distributional representation. Further we use this representation to obtain the integral of products of two p R q ( α , β ; z ) functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of q + 1 R q ( · ) function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-020-00808-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Fourier transforms ; Integrals ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Polynomials ; Representations ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2020, Vol.6 (3)</ispartof><rights>Springer Nature India Private Limited 2020</rights><rights>Springer Nature India Private Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-020-00808-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-020-00808-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pal, Ankit</creatorcontrib><creatorcontrib>Jana, R. K.</creatorcontrib><creatorcontrib>Shukla, A. K.</creatorcontrib><title>Some Integral Representations of the pRq(α,β;z) Function</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In this article, we determine the Fourier transform ( FT ) representation of p R q ( α , β ; z ) function which generates distributional representation. Further we use this representation to obtain the integral of products of two p R q ( α , β ; z ) functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of q + 1 R q ( · ) function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Fourier transforms</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEFKA0EQRRtRMMRcwNWAGwVbq7p60tO4kmA0EBCirpvpTiUmxJnJ9GTjrfQA3sCcyYkRXNWH__gFT4hThCsEMNdRQ4ZWggIJkEEm6UB0FForU2P7h20m3WYEOha9GJcAoFAbUFlH3DyVb5yMiobndb5KJlzVHLlo8mZRFjEpZ0nzykk1WZ9vPy63n99f7xfJcFOEXX0ijmb5KnLv73bFy_DuefAgx4_3o8HtWFaoFcmMUzXldKaDD8qAV-DRM6AJyhtuK7SkGdkHo9j6oFPugwmQ921KU2OoK872u1VdrjccG7csN3XRvnSKrCU0VlFL0Z6KVb0o5lz_UwhuJ8rtRblWlPsV5Yh-AFRiXDM</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Pal, Ankit</creator><creator>Jana, R. K.</creator><creator>Shukla, A. K.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2020</creationdate><title>Some Integral Representations of the pRq(α,β;z) Function</title><author>Pal, Ankit ; Jana, R. K. ; Shukla, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1423-8e52de5f4cbc270b20b1be017c2b7e2de1934e1ebc72e9bc45e607c0a6953d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Fourier transforms</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Ankit</creatorcontrib><creatorcontrib>Jana, R. K.</creatorcontrib><creatorcontrib>Shukla, A. K.</creatorcontrib><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Ankit</au><au>Jana, R. K.</au><au>Shukla, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Integral Representations of the pRq(α,β;z) Function</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><issue>3</issue><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In this article, we determine the Fourier transform ( FT ) representation of p R q ( α , β ; z ) function which generates distributional representation. Further we use this representation to obtain the integral of products of two p R q ( α , β ; z ) functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of q + 1 R q ( · ) function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-020-00808-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2020, Vol.6 (3)
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2399317923
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Applied mathematics
Computational mathematics
Computational Science and Engineering
Fourier transforms
Integrals
Mathematical analysis
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Polynomials
Representations
Theoretical
title Some Integral Representations of the pRq(α,β;z) Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Integral%20Representations%20of%20the%20pRq(%CE%B1,%CE%B2%CD%BEz)%20Function&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Pal,%20Ankit&rft.date=2020&rft.volume=6&rft.issue=3&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-020-00808-3&rft_dat=%3Cproquest_sprin%3E2399317923%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399317923&rft_id=info:pmid/&rfr_iscdi=true