Some Integral Representations of the pRq(α,β;z) Function
In this article, we determine the Fourier transform ( FT ) representation of p R q ( α , β ; z ) function which generates distributional representation. Further we use this representation to obtain the integral of products of two p R q ( α , β ; z ) functions by employing the Parseval’s identity of...
Gespeichert in:
Veröffentlicht in: | International journal of applied and computational mathematics 2020, Vol.6 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | International journal of applied and computational mathematics |
container_volume | 6 |
creator | Pal, Ankit Jana, R. K. Shukla, A. K. |
description | In this article, we determine the Fourier transform (
FT
) representation of
p
R
q
(
α
,
β
;
z
)
function which generates distributional representation. Further we use this representation to obtain the integral of products of two
p
R
q
(
α
,
β
;
z
)
functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of
q
+
1
R
q
(
·
)
function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial. |
doi_str_mv | 10.1007/s40819-020-00808-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2399317923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399317923</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1423-8e52de5f4cbc270b20b1be017c2b7e2de1934e1ebc72e9bc45e607c0a6953d773</originalsourceid><addsrcrecordid>eNpFkEFKA0EQRRtRMMRcwNWAGwVbq7p60tO4kmA0EBCirpvpTiUmxJnJ9GTjrfQA3sCcyYkRXNWH__gFT4hThCsEMNdRQ4ZWggIJkEEm6UB0FForU2P7h20m3WYEOha9GJcAoFAbUFlH3DyVb5yMiobndb5KJlzVHLlo8mZRFjEpZ0nzykk1WZ9vPy63n99f7xfJcFOEXX0ijmb5KnLv73bFy_DuefAgx4_3o8HtWFaoFcmMUzXldKaDD8qAV-DRM6AJyhtuK7SkGdkHo9j6oFPugwmQ921KU2OoK872u1VdrjccG7csN3XRvnSKrCU0VlFL0Z6KVb0o5lz_UwhuJ8rtRblWlPsV5Yh-AFRiXDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399317923</pqid></control><display><type>article</type><title>Some Integral Representations of the pRq(α,β;z) Function</title><source>Springer Nature - Complete Springer Journals</source><creator>Pal, Ankit ; Jana, R. K. ; Shukla, A. K.</creator><creatorcontrib>Pal, Ankit ; Jana, R. K. ; Shukla, A. K.</creatorcontrib><description>In this article, we determine the Fourier transform (
FT
) representation of
p
R
q
(
α
,
β
;
z
)
function which generates distributional representation. Further we use this representation to obtain the integral of products of two
p
R
q
(
α
,
β
;
z
)
functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of
q
+
1
R
q
(
·
)
function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-020-00808-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Fourier transforms ; Integrals ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Polynomials ; Representations ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2020, Vol.6 (3)</ispartof><rights>Springer Nature India Private Limited 2020</rights><rights>Springer Nature India Private Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-020-00808-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-020-00808-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pal, Ankit</creatorcontrib><creatorcontrib>Jana, R. K.</creatorcontrib><creatorcontrib>Shukla, A. K.</creatorcontrib><title>Some Integral Representations of the pRq(α,β;z) Function</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In this article, we determine the Fourier transform (
FT
) representation of
p
R
q
(
α
,
β
;
z
)
function which generates distributional representation. Further we use this representation to obtain the integral of products of two
p
R
q
(
α
,
β
;
z
)
functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of
q
+
1
R
q
(
·
)
function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Fourier transforms</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEFKA0EQRRtRMMRcwNWAGwVbq7p60tO4kmA0EBCirpvpTiUmxJnJ9GTjrfQA3sCcyYkRXNWH__gFT4hThCsEMNdRQ4ZWggIJkEEm6UB0FForU2P7h20m3WYEOha9GJcAoFAbUFlH3DyVb5yMiobndb5KJlzVHLlo8mZRFjEpZ0nzykk1WZ9vPy63n99f7xfJcFOEXX0ijmb5KnLv73bFy_DuefAgx4_3o8HtWFaoFcmMUzXldKaDD8qAV-DRM6AJyhtuK7SkGdkHo9j6oFPugwmQ921KU2OoK872u1VdrjccG7csN3XRvnSKrCU0VlFL0Z6KVb0o5lz_UwhuJ8rtRblWlPsV5Yh-AFRiXDM</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Pal, Ankit</creator><creator>Jana, R. K.</creator><creator>Shukla, A. K.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2020</creationdate><title>Some Integral Representations of the pRq(α,β;z) Function</title><author>Pal, Ankit ; Jana, R. K. ; Shukla, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1423-8e52de5f4cbc270b20b1be017c2b7e2de1934e1ebc72e9bc45e607c0a6953d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Fourier transforms</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Ankit</creatorcontrib><creatorcontrib>Jana, R. K.</creatorcontrib><creatorcontrib>Shukla, A. K.</creatorcontrib><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Ankit</au><au>Jana, R. K.</au><au>Shukla, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Integral Representations of the pRq(α,β;z) Function</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><issue>3</issue><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In this article, we determine the Fourier transform (
FT
) representation of
p
R
q
(
α
,
β
;
z
)
function which generates distributional representation. Further we use this representation to obtain the integral of products of two
p
R
q
(
α
,
β
;
z
)
functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of
q
+
1
R
q
(
·
)
function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-020-00808-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2020, Vol.6 (3) |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2399317923 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Fourier transforms Integrals Mathematical analysis Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Polynomials Representations Theoretical |
title | Some Integral Representations of the pRq(α,β;z) Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Integral%20Representations%20of%20the%20pRq(%CE%B1,%CE%B2%CD%BEz)%20Function&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Pal,%20Ankit&rft.date=2020&rft.volume=6&rft.issue=3&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-020-00808-3&rft_dat=%3Cproquest_sprin%3E2399317923%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399317923&rft_id=info:pmid/&rfr_iscdi=true |