Some Integral Representations of the pRq(α,β;z) Function

In this article, we determine the Fourier transform ( FT ) representation of p R q ( α , β ; z ) function which generates distributional representation. Further we use this representation to obtain the integral of products of two p R q ( α , β ; z ) functions by employing the Parseval’s identity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2020, Vol.6 (3)
Hauptverfasser: Pal, Ankit, Jana, R. K., Shukla, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we determine the Fourier transform ( FT ) representation of p R q ( α , β ; z ) function which generates distributional representation. Further we use this representation to obtain the integral of products of two p R q ( α , β ; z ) functions by employing the Parseval’s identity of Fourier transform. We also set up some new integral representations of q + 1 R q ( · ) function which have some particular cases in the light of Konhauser polynomial and Laguerre polynomial.
ISSN:2349-5103
2199-5796
DOI:10.1007/s40819-020-00808-3