A Wavelet Based Hybrid Threshold Transform Method for Speech Intelligibility and Quality in Noisy Speech Patterns of English Language

The paper proposes a method to improve the performance of speech communication system in a highly noisy industrial environment. For the improvement, different speech signals are considered which includes signals from different environments such as car noise, railway station, babble noise, street noi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2020-05, Vol.112 (2), p.1113-1135
Hauptverfasser: Kaur Ojhla, Harjeet, Patil, Sharada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper proposes a method to improve the performance of speech communication system in a highly noisy industrial environment. For the improvement, different speech signals are considered which includes signals from different environments such as car noise, railway station, babble noise, street noise which are corrupted with additional noise as input data set for processing. This database is processed using suitable filters which will remove the effect of noise to some extent. Different algorithms have been proposed to minimize the effect of noise to a certain limit. The denoising algorithms are generally the different wavelet thresholding method which removes the noise from the speech signal. Many researchers have worked on soft and hard thresholding for image processing. The proposed method of hybrid thresholding comprises of both soft and hard thresholding process which is comparatively better method than the previous methods. The method can be implemented for the non-stationary noise and it also removes the problems of edges. Unlike the traditional way of using single value, different values are used for the adaptive filtering to remove the edges. During the course of experiments, the dataset of IIIT-H with a set of noisy files from Noizeus and AURORA database having sampling rate of 16 kHz has been used. Results are calculated with subjective and objective measures for fine and broad level quality assessment. SNR, SSNR, PSNR, NRMSE, and PESQ parameters are used as performance parameters and outperform with other combinations as compared to conventional methods. The hybrid threshold method yields better results with significant improvement in speech quality and intelligibility.
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-020-07093-9