Positivity of direct images with a Poincaré type twist
We consider a holomorphic family \(f:\mathcal{X} \to S\) of compact complex manifolds and a line bundle \(\mathcal{L}\to \mathcal{X}\). Given that \(\mathcal{L}^{-1}\) carries a singular hermitian metric that has Poincaré type singularities along a relative snc divisor \(\mathcal{D}\), the direct im...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a holomorphic family \(f:\mathcal{X} \to S\) of compact complex manifolds and a line bundle \(\mathcal{L}\to \mathcal{X}\). Given that \(\mathcal{L}^{-1}\) carries a singular hermitian metric that has Poincaré type singularities along a relative snc divisor \(\mathcal{D}\), the direct image \(f_*(K_{\mathcal{X}/S}\otimes \mathcal{D} \otimes \mathcal{L})\) carries a smooth hermitian metric. In case \(\mathcal{L}\) is relatively positive, we give an explicit formula for its curvature. The result applies to families of log-canonically polarized pairs. Moreover we show that it improves the general positivity result of Berndtsson-Păun in a special situation of a big line bundle. |
---|---|
ISSN: | 2331-8422 |