Holography for a De Sitter-Esque geometry
Warped dS 3 arises as a solution to topologically massive gravity (TMG) with positive cosmological constant +1/ ℓ 2 and Chern-Simons coefficient 1/ μ in the region μ 2 ℓ 2 < 27. It is given by a real line fibration over two-dimensional de Sitter space and is equivalent to the rotating Nariai geom...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2011-05, Vol.2011 (5), Article 3 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Warped dS
3
arises as a solution to topologically massive gravity (TMG) with positive cosmological constant +1/
ℓ
2
and Chern-Simons coefficient 1/
μ
in the region
μ
2
ℓ
2
< 27. It is given by a real line fibration over two-dimensional de Sitter space and is equivalent to the rotating Nariai geometry at fixed polar angle. We study the thermodynamic and asymptotic structure of a family of geometries with warped dS
3
asymptotics. Interestingly, these solutions have both a cosmological horizon and an internal one, and their entropy is unbounded from above unlike black holes in regular de Sitter space. The asymptotic symmetry group resides at future infinity and is given by a semi-direct product of a Virasoro algebra and a current algebra. The right moving central charge vanishes when
μ
2
ℓ
2
= 27/5. We discuss the possible holographic interpretation of these de Sitter-esque spacetimes. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP05(2011)003 |