Holographic Roberge Weiss transitions II: Defect theories and the Sakai Sugimoto model

We extend the work of [ 1 ], including an imaginary chemical potential for quark number into the Sakai Sugimoto model and codimension k defect theories. The phase diagram of these models are a function of three parameters, the temperature, chemical potential and the asymptotic separation of the flav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2011-09, Vol.2011 (9), Article 87
1. Verfasser: Rafferty, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title The journal of high energy physics
container_volume 2011
creator Rafferty, James
description We extend the work of [ 1 ], including an imaginary chemical potential for quark number into the Sakai Sugimoto model and codimension k defect theories. The phase diagram of these models are a function of three parameters, the temperature, chemical potential and the asymptotic separation of the flavour branes, related to a mass for the quarks in the boundary theories. We compute the phase diagrams and the pressure due to the flavours of the theories as a function of these parameters and show that there are Roberge Weiss transitions in the high temperature phases, chiral symmetry restored for the Sakai Sugimoto model and deconfined for the defect models, while at low temperatures there are no Roberge Weiss transitions. In all the models we consider the transitions between low and high temperature phases are first order, hence the points where they meet the Roberge Weiss lines are triple points. The pressure for the defect theories scales in the way we expect from dimensional analysis while the Sakai Sugimoto model exhibits unusual scaling. We show that the models we consider are all analytic in μ 2 when μ 2 is small.
doi_str_mv 10.1007/JHEP09(2011)087
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398248636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398248636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a302a9653ebcb1b00c0dd1396fd2f30cb65c6e39103cf1d0dc6cea34b3f88d9e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUws1pigSH0HLdOzIag0KJKIMrHaDn2JXVp42KnA_-eVEGChenupOd9T3oIOWVwyQCywcNk_ATyPAXGLiDP9kiPQSqTfJjJ_T_7ITmKcQnARkxCj7xN_MpXQW8WztBnX2CokL6ji5E2QdfRNc7XkU6nV_QWSzQNbRbog8NIdW13B53rD-3ofFu5tW88XXuLq2NyUOpVxJOf2Sevd-OXm0kye7yf3lzPEsMz0SSaQ6qlGHEsTMEKAAPWMi5FadOSgynEyAjkkgE3JbNgjTCo-bDgZZ5bibxPzrreTfCfW4yNWvptqNuXKuUyT4e54KKlBh1lgo8xYKk2wa11-FIM1E6e6uSpnTzVymsT0CViS9YVht_e_yLfy_Fxmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398248636</pqid></control><display><type>article</type><title>Holographic Roberge Weiss transitions II: Defect theories and the Sakai Sugimoto model</title><source>Springer Nature OA Free Journals</source><creator>Rafferty, James</creator><creatorcontrib>Rafferty, James</creatorcontrib><description>We extend the work of [ 1 ], including an imaginary chemical potential for quark number into the Sakai Sugimoto model and codimension k defect theories. The phase diagram of these models are a function of three parameters, the temperature, chemical potential and the asymptotic separation of the flavour branes, related to a mass for the quarks in the boundary theories. We compute the phase diagrams and the pressure due to the flavours of the theories as a function of these parameters and show that there are Roberge Weiss transitions in the high temperature phases, chiral symmetry restored for the Sakai Sugimoto model and deconfined for the defect models, while at low temperatures there are no Roberge Weiss transitions. In all the models we consider the transitions between low and high temperature phases are first order, hence the points where they meet the Roberge Weiss lines are triple points. The pressure for the defect theories scales in the way we expect from dimensional analysis while the Sakai Sugimoto model exhibits unusual scaling. We show that the models we consider are all analytic in μ 2 when μ 2 is small.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2011)087</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Branes ; Chemical potential ; Classical and Quantum Gravitation ; Defects ; Dimensional analysis ; Elementary Particles ; Flavor (particle physics) ; High energy physics ; High temperature ; Low temperature ; Mathematical models ; Parameters ; Phase diagrams ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Quarks ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2011-09, Vol.2011 (9), Article 87</ispartof><rights>SISSA, Trieste, Italy 2011</rights><rights>SISSA, Trieste, Italy 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a302a9653ebcb1b00c0dd1396fd2f30cb65c6e39103cf1d0dc6cea34b3f88d9e3</citedby><cites>FETCH-LOGICAL-c376t-a302a9653ebcb1b00c0dd1396fd2f30cb65c6e39103cf1d0dc6cea34b3f88d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP09(2011)087$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP09(2011)087$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP09(2011)087$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Rafferty, James</creatorcontrib><title>Holographic Roberge Weiss transitions II: Defect theories and the Sakai Sugimoto model</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>We extend the work of [ 1 ], including an imaginary chemical potential for quark number into the Sakai Sugimoto model and codimension k defect theories. The phase diagram of these models are a function of three parameters, the temperature, chemical potential and the asymptotic separation of the flavour branes, related to a mass for the quarks in the boundary theories. We compute the phase diagrams and the pressure due to the flavours of the theories as a function of these parameters and show that there are Roberge Weiss transitions in the high temperature phases, chiral symmetry restored for the Sakai Sugimoto model and deconfined for the defect models, while at low temperatures there are no Roberge Weiss transitions. In all the models we consider the transitions between low and high temperature phases are first order, hence the points where they meet the Roberge Weiss lines are triple points. The pressure for the defect theories scales in the way we expect from dimensional analysis while the Sakai Sugimoto model exhibits unusual scaling. We show that the models we consider are all analytic in μ 2 when μ 2 is small.</description><subject>Branes</subject><subject>Chemical potential</subject><subject>Classical and Quantum Gravitation</subject><subject>Defects</subject><subject>Dimensional analysis</subject><subject>Elementary Particles</subject><subject>Flavor (particle physics)</subject><subject>High energy physics</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Quarks</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kD1PwzAQhi0EEqUws1pigSH0HLdOzIag0KJKIMrHaDn2JXVp42KnA_-eVEGChenupOd9T3oIOWVwyQCywcNk_ATyPAXGLiDP9kiPQSqTfJjJ_T_7ITmKcQnARkxCj7xN_MpXQW8WztBnX2CokL6ji5E2QdfRNc7XkU6nV_QWSzQNbRbog8NIdW13B53rD-3ofFu5tW88XXuLq2NyUOpVxJOf2Sevd-OXm0kye7yf3lzPEsMz0SSaQ6qlGHEsTMEKAAPWMi5FadOSgynEyAjkkgE3JbNgjTCo-bDgZZ5bibxPzrreTfCfW4yNWvptqNuXKuUyT4e54KKlBh1lgo8xYKk2wa11-FIM1E6e6uSpnTzVymsT0CViS9YVht_e_yLfy_Fxmg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Rafferty, James</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110901</creationdate><title>Holographic Roberge Weiss transitions II: Defect theories and the Sakai Sugimoto model</title><author>Rafferty, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a302a9653ebcb1b00c0dd1396fd2f30cb65c6e39103cf1d0dc6cea34b3f88d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Branes</topic><topic>Chemical potential</topic><topic>Classical and Quantum Gravitation</topic><topic>Defects</topic><topic>Dimensional analysis</topic><topic>Elementary Particles</topic><topic>Flavor (particle physics)</topic><topic>High energy physics</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Quarks</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafferty, James</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rafferty, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holographic Roberge Weiss transitions II: Defect theories and the Sakai Sugimoto model</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>2011</volume><issue>9</issue><artnum>87</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>We extend the work of [ 1 ], including an imaginary chemical potential for quark number into the Sakai Sugimoto model and codimension k defect theories. The phase diagram of these models are a function of three parameters, the temperature, chemical potential and the asymptotic separation of the flavour branes, related to a mass for the quarks in the boundary theories. We compute the phase diagrams and the pressure due to the flavours of the theories as a function of these parameters and show that there are Roberge Weiss transitions in the high temperature phases, chiral symmetry restored for the Sakai Sugimoto model and deconfined for the defect models, while at low temperatures there are no Roberge Weiss transitions. In all the models we consider the transitions between low and high temperature phases are first order, hence the points where they meet the Roberge Weiss lines are triple points. The pressure for the defect theories scales in the way we expect from dimensional analysis while the Sakai Sugimoto model exhibits unusual scaling. We show that the models we consider are all analytic in μ 2 when μ 2 is small.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP09(2011)087</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2011-09, Vol.2011 (9), Article 87
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2398248636
source Springer Nature OA Free Journals
subjects Branes
Chemical potential
Classical and Quantum Gravitation
Defects
Dimensional analysis
Elementary Particles
Flavor (particle physics)
High energy physics
High temperature
Low temperature
Mathematical models
Parameters
Phase diagrams
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Relativity Theory
String Theory
title Holographic Roberge Weiss transitions II: Defect theories and the Sakai Sugimoto model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holographic%20Roberge%20Weiss%20transitions%20II:%20Defect%20theories%20and%20the%20Sakai%20Sugimoto%20model&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Rafferty,%20James&rft.date=2011-09-01&rft.volume=2011&rft.issue=9&rft.artnum=87&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2011)087&rft_dat=%3Cproquest_C6C%3E2398248636%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398248636&rft_id=info:pmid/&rfr_iscdi=true