Holographic Roberge Weiss transitions II: Defect theories and the Sakai Sugimoto model

We extend the work of [ 1 ], including an imaginary chemical potential for quark number into the Sakai Sugimoto model and codimension k defect theories. The phase diagram of these models are a function of three parameters, the temperature, chemical potential and the asymptotic separation of the flav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2011-09, Vol.2011 (9), Article 87
1. Verfasser: Rafferty, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the work of [ 1 ], including an imaginary chemical potential for quark number into the Sakai Sugimoto model and codimension k defect theories. The phase diagram of these models are a function of three parameters, the temperature, chemical potential and the asymptotic separation of the flavour branes, related to a mass for the quarks in the boundary theories. We compute the phase diagrams and the pressure due to the flavours of the theories as a function of these parameters and show that there are Roberge Weiss transitions in the high temperature phases, chiral symmetry restored for the Sakai Sugimoto model and deconfined for the defect models, while at low temperatures there are no Roberge Weiss transitions. In all the models we consider the transitions between low and high temperature phases are first order, hence the points where they meet the Roberge Weiss lines are triple points. The pressure for the defect theories scales in the way we expect from dimensional analysis while the Sakai Sugimoto model exhibits unusual scaling. We show that the models we consider are all analytic in μ 2 when μ 2 is small.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP09(2011)087