The Poisson sigma model on closed surfaces

A bstract Using methods of formal geometry, the Poisson sigma model on a closed surface is studied in perturbation theory. The effective action, as a function on vacua, is shown to have no quantum corrections if the surface is a torus or if the Poisson structure is regular and unimodular (e.g., symp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2012-01, Vol.2012 (1), Article 99
Hauptverfasser: Bonechi, Francesco, Cattaneo, Alberto S., Mnev, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Using methods of formal geometry, the Poisson sigma model on a closed surface is studied in perturbation theory. The effective action, as a function on vacua, is shown to have no quantum corrections if the surface is a torus or if the Poisson structure is regular and unimodular (e.g., symplectic). In the case of a Kähler structure or of a trivial Poisson structure, the partition function on the torus is shown to be the Euler characteristic of the target; some evidence is given for this to happen more generally. The methods of formal geometry introduced in this paper might be applicable to other sigma models, at least of the AKSZ type.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP01(2012)099