Entropy of Bernoulli convolutions and uniform exponential growth for linear groups

The exponential growth rate of non-polynomially growing subgroups of GLrf is conjectured to admit a uniform lower bound. This is known for non-amenable subgroups, while for amenable subgroups it is known to imply the Lehmer conjecture from number theory. In this note, we show that it is equivalent t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2020-03, Vol.140 (2), p.443-481
Hauptverfasser: Breuillard, Emmanuel, Varjú, Péter P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exponential growth rate of non-polynomially growing subgroups of GLrf is conjectured to admit a uniform lower bound. This is known for non-amenable subgroups, while for amenable subgroups it is known to imply the Lehmer conjecture from number theory. In this note, we show that it is equivalent to the Lehmer conjecture. This is done by establishing a lower bound for the entropy of the random walk on the semi-group generated by the maps x → λ · x ± 1, where λ is an algebraic number. We give a bound in terms of the Mahler measure of λ . We also derive a bound on the dimension of Bernoulli convolutions.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-020-0100-0