Winter Upper-Ocean Stability and Ice–Ocean Feedbacks in the Sea Ice–Covered Southern Ocean
In this study, under-ice ocean data from profiling floats, instrumented seals, and shipboard casts are used to assess wintertime upper-ocean stability and heat availability in the sea ice–covered Southern Ocean. This analysis reveals that the southern Weddell Sea, which features a weak upper-ocean s...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2019-04, Vol.49 (4), p.1099-1117 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, under-ice ocean data from profiling floats, instrumented seals, and shipboard casts are used to assess wintertime upper-ocean stability and heat availability in the sea ice–covered Southern Ocean. This analysis reveals that the southern Weddell Sea, which features a weak upper-ocean stratification and relatively strong thermocline, is preconditioned for exceptionally high rates of winter ventilation. This preconditioning also facilitates a strong negative feedback to winter ice growth. Idealized experiments with a 1D ice–ocean model show that the entrainment of heat into the mixed layer of this region can maintain a near-constant ice thickness over much of winter. However, this quasi-equilibrium is attained when the pycnocline is thin and supports a large temperature gradient. We find that the surface stress imparted by a powerful storm may upset this balance and lead to substantial ice melt. This response can be greatly amplified when coincident with anomalous thermocline shoaling. In more strongly stratified regions, such as near the sea ice edge of the major gyres, winter ice growth is weakly limited by the entrainment of heat into the mixed layer. Thus, the thermodynamic coupling between winter sea ice growth and ocean ventilation has significant regional variability. This regionality will influence the response of the Southern Ocean ice–ocean system to future changes in ocean stratification and surface forcing. |
---|---|
ISSN: | 0022-3670 1520-0485 |
DOI: | 10.1175/JPO-D-18-0184.1 |