Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories
A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K 3 twofold and Quintic threefold. An error measure i...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2010-06, Vol.2010 (6), Article 107 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2010 |
creator | Anderson, Lara B. Braun, Volker Karp, Robert L. Ovrut, Burt A. |
description | A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the
K
3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua. |
doi_str_mv | 10.1007/JHEP06(2010)107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398102106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398102106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-b8649da568ca46a54c59f244d0943c4fc158ea3c924ffd67551daec3f547ef113</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOKdnrwEveqh70yZtc5QxrTI_DnoQhJKlyZbRJTNJhf33dlTQi6f3g-f3vLwPQucErglAMXmoZi-QX6ZA4IpAcYBGBFKelLTgh3_6Y3QSwhqAMMJhhD6euo3yRooWV8pvTDTC4ndhl8mjaduApbNWyWicDVjYBn_1g_N40dmmVThEsTCtiTtsLF6pqLyLRuK4Us4bFU7RkRZtUGc_dYzebmev0yqZP9_dT2_micwIxGRR5pQ3guWlFDQXjErGdUppA5xmkmpJWKlEJnlKtW7ygjHSCCUzzWihNCHZGF0MvlvvPjsVYr12nbf9yTrNeNn_TiDvVZNBJb0LwStdb73ZCL-rCdT7COshwnofYb8oegIGIvRKu1T-1_c_5BupW3Qp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398102106</pqid></control><display><type>article</type><title>Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories</title><source>Springer Nature OA Free Journals</source><creator>Anderson, Lara B. ; Braun, Volker ; Karp, Robert L. ; Ovrut, Burt A.</creator><creatorcontrib>Anderson, Lara B. ; Braun, Volker ; Karp, Robert L. ; Ovrut, Burt A.</creatorcontrib><description>A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the
K
3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2010)107</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Bundles ; Bundling ; Classical and Quantum Gravitation ; Elementary Particles ; Error analysis ; High energy physics ; Mathematical analysis ; Numerical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2010-06, Vol.2010 (6), Article 107</ispartof><rights>SISSA, Trieste, Italy 2010</rights><rights>SISSA, Trieste, Italy 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-b8649da568ca46a54c59f244d0943c4fc158ea3c924ffd67551daec3f547ef113</citedby><cites>FETCH-LOGICAL-c310t-b8649da568ca46a54c59f244d0943c4fc158ea3c924ffd67551daec3f547ef113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP06(2010)107$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP06(2010)107$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP06(2010)107$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Anderson, Lara B.</creatorcontrib><creatorcontrib>Braun, Volker</creatorcontrib><creatorcontrib>Karp, Robert L.</creatorcontrib><creatorcontrib>Ovrut, Burt A.</creatorcontrib><title>Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the
K
3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.</description><subject>Algorithms</subject><subject>Bundles</subject><subject>Bundling</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Error analysis</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1LwzAYxoMoOKdnrwEveqh70yZtc5QxrTI_DnoQhJKlyZbRJTNJhf33dlTQi6f3g-f3vLwPQucErglAMXmoZi-QX6ZA4IpAcYBGBFKelLTgh3_6Y3QSwhqAMMJhhD6euo3yRooWV8pvTDTC4ndhl8mjaduApbNWyWicDVjYBn_1g_N40dmmVThEsTCtiTtsLF6pqLyLRuK4Us4bFU7RkRZtUGc_dYzebmev0yqZP9_dT2_micwIxGRR5pQ3guWlFDQXjErGdUppA5xmkmpJWKlEJnlKtW7ygjHSCCUzzWihNCHZGF0MvlvvPjsVYr12nbf9yTrNeNn_TiDvVZNBJb0LwStdb73ZCL-rCdT7COshwnofYb8oegIGIvRKu1T-1_c_5BupW3Qp</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Anderson, Lara B.</creator><creator>Braun, Volker</creator><creator>Karp, Robert L.</creator><creator>Ovrut, Burt A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100601</creationdate><title>Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories</title><author>Anderson, Lara B. ; Braun, Volker ; Karp, Robert L. ; Ovrut, Burt A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-b8649da568ca46a54c59f244d0943c4fc158ea3c924ffd67551daec3f547ef113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bundles</topic><topic>Bundling</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Error analysis</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Lara B.</creatorcontrib><creatorcontrib>Braun, Volker</creatorcontrib><creatorcontrib>Karp, Robert L.</creatorcontrib><creatorcontrib>Ovrut, Burt A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anderson, Lara B.</au><au>Braun, Volker</au><au>Karp, Robert L.</au><au>Ovrut, Burt A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>2010</volume><issue>6</issue><artnum>107</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the
K
3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP06(2010)107</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2010-06, Vol.2010 (6), Article 107 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2398102106 |
source | Springer Nature OA Free Journals |
subjects | Algorithms Bundles Bundling Classical and Quantum Gravitation Elementary Particles Error analysis High energy physics Mathematical analysis Numerical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory |
title | Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Hermitian%20Yang-Mills%20connections%20and%20vector%20bundle%20stability%20in%20heterotic%20theories&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Anderson,%20Lara%20B.&rft.date=2010-06-01&rft.volume=2010&rft.issue=6&rft.artnum=107&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2010)107&rft_dat=%3Cproquest_C6C%3E2398102106%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398102106&rft_id=info:pmid/&rfr_iscdi=true |