Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories

A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K 3 twofold and Quintic threefold. An error measure i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2010-06, Vol.2010 (6), Article 107
Hauptverfasser: Anderson, Lara B., Braun, Volker, Karp, Robert L., Ovrut, Burt A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title The journal of high energy physics
container_volume 2010
creator Anderson, Lara B.
Braun, Volker
Karp, Robert L.
Ovrut, Burt A.
description A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K 3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.
doi_str_mv 10.1007/JHEP06(2010)107
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398102106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398102106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-b8649da568ca46a54c59f244d0943c4fc158ea3c924ffd67551daec3f547ef113</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOKdnrwEveqh70yZtc5QxrTI_DnoQhJKlyZbRJTNJhf33dlTQi6f3g-f3vLwPQucErglAMXmoZi-QX6ZA4IpAcYBGBFKelLTgh3_6Y3QSwhqAMMJhhD6euo3yRooWV8pvTDTC4ndhl8mjaduApbNWyWicDVjYBn_1g_N40dmmVThEsTCtiTtsLF6pqLyLRuK4Us4bFU7RkRZtUGc_dYzebmev0yqZP9_dT2_micwIxGRR5pQ3guWlFDQXjErGdUppA5xmkmpJWKlEJnlKtW7ygjHSCCUzzWihNCHZGF0MvlvvPjsVYr12nbf9yTrNeNn_TiDvVZNBJb0LwStdb73ZCL-rCdT7COshwnofYb8oegIGIvRKu1T-1_c_5BupW3Qp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398102106</pqid></control><display><type>article</type><title>Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories</title><source>Springer Nature OA Free Journals</source><creator>Anderson, Lara B. ; Braun, Volker ; Karp, Robert L. ; Ovrut, Burt A.</creator><creatorcontrib>Anderson, Lara B. ; Braun, Volker ; Karp, Robert L. ; Ovrut, Burt A.</creatorcontrib><description>A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K 3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2010)107</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Bundles ; Bundling ; Classical and Quantum Gravitation ; Elementary Particles ; Error analysis ; High energy physics ; Mathematical analysis ; Numerical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2010-06, Vol.2010 (6), Article 107</ispartof><rights>SISSA, Trieste, Italy 2010</rights><rights>SISSA, Trieste, Italy 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-b8649da568ca46a54c59f244d0943c4fc158ea3c924ffd67551daec3f547ef113</citedby><cites>FETCH-LOGICAL-c310t-b8649da568ca46a54c59f244d0943c4fc158ea3c924ffd67551daec3f547ef113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP06(2010)107$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP06(2010)107$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP06(2010)107$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Anderson, Lara B.</creatorcontrib><creatorcontrib>Braun, Volker</creatorcontrib><creatorcontrib>Karp, Robert L.</creatorcontrib><creatorcontrib>Ovrut, Burt A.</creatorcontrib><title>Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K 3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.</description><subject>Algorithms</subject><subject>Bundles</subject><subject>Bundling</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Error analysis</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1LwzAYxoMoOKdnrwEveqh70yZtc5QxrTI_DnoQhJKlyZbRJTNJhf33dlTQi6f3g-f3vLwPQucErglAMXmoZi-QX6ZA4IpAcYBGBFKelLTgh3_6Y3QSwhqAMMJhhD6euo3yRooWV8pvTDTC4ndhl8mjaduApbNWyWicDVjYBn_1g_N40dmmVThEsTCtiTtsLF6pqLyLRuK4Us4bFU7RkRZtUGc_dYzebmev0yqZP9_dT2_micwIxGRR5pQ3guWlFDQXjErGdUppA5xmkmpJWKlEJnlKtW7ygjHSCCUzzWihNCHZGF0MvlvvPjsVYr12nbf9yTrNeNn_TiDvVZNBJb0LwStdb73ZCL-rCdT7COshwnofYb8oegIGIvRKu1T-1_c_5BupW3Qp</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Anderson, Lara B.</creator><creator>Braun, Volker</creator><creator>Karp, Robert L.</creator><creator>Ovrut, Burt A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100601</creationdate><title>Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories</title><author>Anderson, Lara B. ; Braun, Volker ; Karp, Robert L. ; Ovrut, Burt A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-b8649da568ca46a54c59f244d0943c4fc158ea3c924ffd67551daec3f547ef113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bundles</topic><topic>Bundling</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Error analysis</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Lara B.</creatorcontrib><creatorcontrib>Braun, Volker</creatorcontrib><creatorcontrib>Karp, Robert L.</creatorcontrib><creatorcontrib>Ovrut, Burt A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anderson, Lara B.</au><au>Braun, Volker</au><au>Karp, Robert L.</au><au>Ovrut, Burt A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>2010</volume><issue>6</issue><artnum>107</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K 3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP06(2010)107</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2010-06, Vol.2010 (6), Article 107
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2398102106
source Springer Nature OA Free Journals
subjects Algorithms
Bundles
Bundling
Classical and Quantum Gravitation
Elementary Particles
Error analysis
High energy physics
Mathematical analysis
Numerical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
title Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Hermitian%20Yang-Mills%20connections%20and%20vector%20bundle%20stability%20in%20heterotic%20theories&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Anderson,%20Lara%20B.&rft.date=2010-06-01&rft.volume=2010&rft.issue=6&rft.artnum=107&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2010)107&rft_dat=%3Cproquest_C6C%3E2398102106%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398102106&rft_id=info:pmid/&rfr_iscdi=true