Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories

A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K 3 twofold and Quintic threefold. An error measure i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2010-06, Vol.2010 (6), Article 107
Hauptverfasser: Anderson, Lara B., Braun, Volker, Karp, Robert L., Ovrut, Burt A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K 3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP06(2010)107