Approximate quantum fractional revival in paths and cycles
We initiate the study of approximate quantum fractional revival in graphs, a generalization of pretty good quantum state transfer in graphs. We give a complete characterization of approximate fractional revival in a graph in terms of the eigenvalues and eigenvectors of the adjacency matrix of a grap...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We initiate the study of approximate quantum fractional revival in graphs, a generalization of pretty good quantum state transfer in graphs. We give a complete characterization of approximate fractional revival in a graph in terms of the eigenvalues and eigenvectors of the adjacency matrix of a graph. This characterization follows from a lemma due to Kronecker on Diophantine approximation, and is similar to the spectral characterization of pretty good state transfer in graphs. Using this, we give a complete characterizations of when approximate fractional revival can occur in paths and in cycles. |
---|---|
ISSN: | 2331-8422 |