On Deformations of Pairs (Manifold, Coherent Sheaf)
We analyse infinitesimal deformations of pairs $(X,{\mathcal{F}})$ with ${\mathcal{F}}$ a coherent sheaf on a smooth projective variety $X$ over an algebraically closed field of characteristic 0. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analo...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2019-10, Vol.71 (5), p.1209-1241 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyse infinitesimal deformations of pairs
$(X,{\mathcal{F}})$
with
${\mathcal{F}}$
a coherent sheaf on a smooth projective variety
$X$
over an algebraically closed field of characteristic 0. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analog of a Mukai–Artamkin theorem about the trace map. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-2018-027-8 |