On Deformations of Pairs (Manifold, Coherent Sheaf)

We analyse infinitesimal deformations of pairs $(X,{\mathcal{F}})$ with ${\mathcal{F}}$ a coherent sheaf on a smooth projective variety $X$ over an algebraically closed field of characteristic 0. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2019-10, Vol.71 (5), p.1209-1241
Hauptverfasser: Iacono, Donatella, Manetti, Marco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyse infinitesimal deformations of pairs $(X,{\mathcal{F}})$ with ${\mathcal{F}}$ a coherent sheaf on a smooth projective variety $X$ over an algebraically closed field of characteristic 0. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analog of a Mukai–Artamkin theorem about the trace map.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-2018-027-8