Irreducible Polynomials Over a Finite Field with Restricted Coefficients

We prove a function field analogue of Maynard’s celebrated result about primes with restricted digits. That is, for certain ranges of parameters $n$ and $q$ , we prove an asymptotic formula for the number of irreducible polynomials of degree $n$ over a finite field $\mathbb{F}_{q}$ whose coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2019-06, Vol.62 (2), p.429-439, Article 429
1. Verfasser: Porritt, Sam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a function field analogue of Maynard’s celebrated result about primes with restricted digits. That is, for certain ranges of parameters $n$ and $q$ , we prove an asymptotic formula for the number of irreducible polynomials of degree $n$ over a finite field $\mathbb{F}_{q}$ whose coefficients are restricted to lie in a given subset of $\mathbb{F}_{q}$ .
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2018-027-x