Irreducible Polynomials Over a Finite Field with Restricted Coefficients
We prove a function field analogue of Maynard’s celebrated result about primes with restricted digits. That is, for certain ranges of parameters $n$ and $q$ , we prove an asymptotic formula for the number of irreducible polynomials of degree $n$ over a finite field $\mathbb{F}_{q}$ whose coefficient...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2019-06, Vol.62 (2), p.429-439, Article 429 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a function field analogue of Maynard’s celebrated result about primes with restricted digits. That is, for certain ranges of parameters
$n$
and
$q$
, we prove an asymptotic formula for the number of irreducible polynomials of degree
$n$
over a finite field
$\mathbb{F}_{q}$
whose coefficients are restricted to lie in a given subset of
$\mathbb{F}_{q}$
. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2018-027-x |