ON THE OCCUPANCY PROBLEM FOR A REGIME-SWITCHING MODEL
This article studies the expected occupancy probabilities on an alphabet. Unlike the standard situation, where observations are assumed to be independent and identically distributed, we assume that they follow a regime-switching Markov chain. For this model, we (1) give finite sample bounds on the e...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2020-03, Vol.57 (1), p.53-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article studies the expected occupancy probabilities on an alphabet. Unlike the standard situation, where observations are assumed to be independent and identically distributed, we assume that they follow a regime-switching Markov chain. For this model, we (1) give finite sample bounds on the expected occupancy probabilities, and (2) provide detailed asymptotics in the case where the underlying distribution is regularly varying. We find that in the regularly varying case the finite sample bounds are rate optimal and have, up to a constant, the same rate of decay as the asymptotic result. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/jpr.2020.33 |