ON THE OCCUPANCY PROBLEM FOR A REGIME-SWITCHING MODEL

This article studies the expected occupancy probabilities on an alphabet. Unlike the standard situation, where observations are assumed to be independent and identically distributed, we assume that they follow a regime-switching Markov chain. For this model, we (1) give finite sample bounds on the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2020-03, Vol.57 (1), p.53-77
Hauptverfasser: GRABCHAK, MICHAEL, KELBERT, MARK, PARIS, QUENTIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article studies the expected occupancy probabilities on an alphabet. Unlike the standard situation, where observations are assumed to be independent and identically distributed, we assume that they follow a regime-switching Markov chain. For this model, we (1) give finite sample bounds on the expected occupancy probabilities, and (2) provide detailed asymptotics in the case where the underlying distribution is regularly varying. We find that in the regularly varying case the finite sample bounds are rate optimal and have, up to a constant, the same rate of decay as the asymptotic result.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2020.33