UNIFORM ASYMPTOTIC NORMALITY OF WEIGHTED SUMS OF SHORT-MEMORY LINEAR PROCESSES

Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q < 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that { n − 1 / 2 ∑ i = 1 n X i f ( i / n ) : f ∈ F } converges in outer distribution in the Banach space of bounded fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2020-03, Vol.57 (1), p.174-195
Hauptverfasser: NORVAIŠA, RIMAS, RAČKAUSKAS, ALFREDAS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 1
container_start_page 174
container_title Journal of applied probability
container_volume 57
creator NORVAIŠA, RIMAS
RAČKAUSKAS, ALFREDAS
description Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q < 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that { n − 1 / 2 ∑ i = 1 n X i f ( i / n ) : f ∈ F } converges in outer distribution in the Banach space of bounded functions on F as n → ∞. Several applications to a regression model and a multiple change point model are given.
doi_str_mv 10.1017/jpr.2019.86
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2397463113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48656200</jstor_id><sourcerecordid>48656200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-933461c3618515ac41b11e247ab132074f17b6af445af46f635da90b679a32ec3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKcnz0LAo3TmJWnSHkvNtkJ_jKZDdgptbcGidqbbwf_ejImX7-N9-fAefBC6B7IAAvJ52NsFJRAuAnGBZsCl7wki6SWaEULBC11eo5tpGggB7odyhvJtniyLMsOR3mWbqqiSGOduj9Kk2uFiiV9VslpX6gXrbaZPhV4XZeVlKivKHU6TXEUl3pRFrLRW-hZd9fXH1N39zTnaLlUVr720WCVxlHot5XDwQsa4gJYJCHzw65ZDA9BRLusGGCWS9yAbUfec-y5EL5j_VoekETKsGe1aNkeP57t7O34fu-lghvFov9xLQ1kouWAAzFFPZ6q14zTZrjd7-_5Z2x8DxJyEGSfMnISZQDj64UwP02G0_ygPhC8oIewXVx9fdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397463113</pqid></control><display><type>article</type><title>UNIFORM ASYMPTOTIC NORMALITY OF WEIGHTED SUMS OF SHORT-MEMORY LINEAR PROCESSES</title><source>Cambridge Journals Online</source><source>JSTOR</source><creator>NORVAIŠA, RIMAS ; RAČKAUSKAS, ALFREDAS</creator><creatorcontrib>NORVAIŠA, RIMAS ; RAČKAUSKAS, ALFREDAS</creatorcontrib><description>Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q &lt; 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that { n − 1 / 2 ∑ i = 1 n X i f ( i / n ) : f ∈ F } converges in outer distribution in the Banach space of bounded functions on F as n → ∞. Several applications to a regression model and a multiple change point model are given.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2019.86</identifier><language>eng</language><publisher>Sheffield: Applied Probability Trust</publisher><subject>Banach spaces ; Colon ; Mathematical functions ; Normality ; Random variables ; Regression models ; Research Papers</subject><ispartof>Journal of applied probability, 2020-03, Vol.57 (1), p.174-195</ispartof><rights>Applied Probability Trust 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-933461c3618515ac41b11e247ab132074f17b6af445af46f635da90b679a32ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48656200$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48656200$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>NORVAIŠA, RIMAS</creatorcontrib><creatorcontrib>RAČKAUSKAS, ALFREDAS</creatorcontrib><title>UNIFORM ASYMPTOTIC NORMALITY OF WEIGHTED SUMS OF SHORT-MEMORY LINEAR PROCESSES</title><title>Journal of applied probability</title><description>Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q &lt; 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that { n − 1 / 2 ∑ i = 1 n X i f ( i / n ) : f ∈ F } converges in outer distribution in the Banach space of bounded functions on F as n → ∞. Several applications to a regression model and a multiple change point model are given.</description><subject>Banach spaces</subject><subject>Colon</subject><subject>Mathematical functions</subject><subject>Normality</subject><subject>Random variables</subject><subject>Regression models</subject><subject>Research Papers</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM9LwzAUx4MoOKcnz0LAo3TmJWnSHkvNtkJ_jKZDdgptbcGidqbbwf_ejImX7-N9-fAefBC6B7IAAvJ52NsFJRAuAnGBZsCl7wki6SWaEULBC11eo5tpGggB7odyhvJtniyLMsOR3mWbqqiSGOduj9Kk2uFiiV9VslpX6gXrbaZPhV4XZeVlKivKHU6TXEUl3pRFrLRW-hZd9fXH1N39zTnaLlUVr720WCVxlHot5XDwQsa4gJYJCHzw65ZDA9BRLusGGCWS9yAbUfec-y5EL5j_VoekETKsGe1aNkeP57t7O34fu-lghvFov9xLQ1kouWAAzFFPZ6q14zTZrjd7-_5Z2x8DxJyEGSfMnISZQDj64UwP02G0_ygPhC8oIewXVx9fdQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>NORVAIŠA, RIMAS</creator><creator>RAČKAUSKAS, ALFREDAS</creator><general>Applied Probability Trust</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20200301</creationdate><title>UNIFORM ASYMPTOTIC NORMALITY OF WEIGHTED SUMS OF SHORT-MEMORY LINEAR PROCESSES</title><author>NORVAIŠA, RIMAS ; RAČKAUSKAS, ALFREDAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-933461c3618515ac41b11e247ab132074f17b6af445af46f635da90b679a32ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Banach spaces</topic><topic>Colon</topic><topic>Mathematical functions</topic><topic>Normality</topic><topic>Random variables</topic><topic>Regression models</topic><topic>Research Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NORVAIŠA, RIMAS</creatorcontrib><creatorcontrib>RAČKAUSKAS, ALFREDAS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NORVAIŠA, RIMAS</au><au>RAČKAUSKAS, ALFREDAS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UNIFORM ASYMPTOTIC NORMALITY OF WEIGHTED SUMS OF SHORT-MEMORY LINEAR PROCESSES</atitle><jtitle>Journal of applied probability</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>57</volume><issue>1</issue><spage>174</spage><epage>195</epage><pages>174-195</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q &lt; 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that { n − 1 / 2 ∑ i = 1 n X i f ( i / n ) : f ∈ F } converges in outer distribution in the Banach space of bounded functions on F as n → ∞. Several applications to a regression model and a multiple change point model are given.</abstract><cop>Sheffield</cop><pub>Applied Probability Trust</pub><doi>10.1017/jpr.2019.86</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2020-03, Vol.57 (1), p.174-195
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_journals_2397463113
source Cambridge Journals Online; JSTOR
subjects Banach spaces
Colon
Mathematical functions
Normality
Random variables
Regression models
Research Papers
title UNIFORM ASYMPTOTIC NORMALITY OF WEIGHTED SUMS OF SHORT-MEMORY LINEAR PROCESSES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UNIFORM%20ASYMPTOTIC%20NORMALITY%20OF%20WEIGHTED%20SUMS%20OF%20SHORT-MEMORY%20LINEAR%20PROCESSES&rft.jtitle=Journal%20of%20applied%20probability&rft.au=NORVAI%C5%A0A,%20RIMAS&rft.date=2020-03-01&rft.volume=57&rft.issue=1&rft.spage=174&rft.epage=195&rft.pages=174-195&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2019.86&rft_dat=%3Cjstor_proqu%3E48656200%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397463113&rft_id=info:pmid/&rft_jstor_id=48656200&rfr_iscdi=true