UNIFORM ASYMPTOTIC NORMALITY OF WEIGHTED SUMS OF SHORT-MEMORY LINEAR PROCESSES

Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q < 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that { n − 1 / 2 ∑ i = 1 n X i f ( i / n ) : f ∈ F } converges in outer distribution in the Banach space of bounded fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2020-03, Vol.57 (1), p.174-195
Hauptverfasser: NORVAIŠA, RIMAS, RAČKAUSKAS, ALFREDAS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q < 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that { n − 1 / 2 ∑ i = 1 n X i f ( i / n ) : f ∈ F } converges in outer distribution in the Banach space of bounded functions on F as n → ∞. Several applications to a regression model and a multiple change point model are given.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2019.86