UNIFORM ASYMPTOTIC NORMALITY OF WEIGHTED SUMS OF SHORT-MEMORY LINEAR PROCESSES
Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q < 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that { n − 1 / 2 ∑ i = 1 n X i f ( i / n ) : f ∈ F } converges in outer distribution in the Banach space of bounded fu...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2020-03, Vol.57 (1), p.174-195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X₁, X₂, … be a short-memory linear process of random variables. For 1 ≤ q < 2, let F be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that
{
n
−
1
/
2
∑
i
=
1
n
X
i
f
(
i
/
n
)
:
f
∈
F
}
converges in outer distribution in the Banach space of bounded functions on F as n → ∞. Several applications to a regression model and a multiple change point model are given. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/jpr.2019.86 |