Photoacoustic optical semiconductor characterization based on machine learning and reverse-back procedure

This paper introduces the possibility of the determination of optical absorption and reflexivity coefficient of silicon samples using neural networks and reverse-back procedure based on the photoacoustics response in the frequency domain. Differences between neural network predictions and parameters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2020-05, Vol.52 (5), Article 247
Hauptverfasser: Djordjevic, К. Lj, Galovic, S. P., Jordovic-Pavlovic, M. I., Nesic, M. V., Popovic, M. N., Cojbasic, Z. M., Markushev, D. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces the possibility of the determination of optical absorption and reflexivity coefficient of silicon samples using neural networks and reverse-back procedure based on the photoacoustics response in the frequency domain. Differences between neural network predictions and parameters obtained with standard photoacoustic signal correction procedures are used to adjust our experimental set-up due to the instability of the optical excitation source and the state (contamination) of the illuminated surface. It has been shown that the changes of the optical absorption values correspond to the light source wavelength fluctuations, while changes in the reflexivity coefficient, obtained in this way, correspond to the small effect of the ultrathin layer formation of SiO 2 due to the natural process of surface oxidation.
ISSN:0306-8919
1572-817X
DOI:10.1007/s11082-020-02373-x