Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis

Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2020-01, Vol.122 (2), p.433-458
Hauptverfasser: Wang, Yingjun, Liao, Zhongyuan, Shi, Shengyu, Wang, Zhenpei, Poh, Leong Hien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 2
container_start_page 433
container_title Computer modeling in engineering & sciences
container_volume 122
creator Wang, Yingjun
Liao, Zhongyuan
Shi, Shengyu
Wang, Zhenpei
Poh, Leong Hien
description Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity approaches.
doi_str_mv 10.32604/cmes.2020.08680
format Article
fullrecord <record><control><sourceid>proquest_ingen</sourceid><recordid>TN_cdi_proquest_journals_2397264082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ingid>tsp/cmes/2020/00000122/00000002/art00002</ingid><sourcerecordid>2397264082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-559d4745d25b3c8fbd57f3f7e85934fbb5129b02ee32fd8f32d437c716db31bc3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhCMEEqVw52iJc4q9jvO4UbU8KlUqUunZOI5dXOWF7SDKrydtQLCXncPMaPcLgmuCJxRiHN3KSrkJYMATnMYpPglGhEEcEobj018dZXAeXDi3w5jGNM1GwetceBHOrflQNVp720nfWVGiuXJmW6NV601lvoQ3TY10Y9Gz8qIM12-iVQWadp_KG-nQxpl6ixau2aqmUt4aiaa1KPfOuMvgTIvSqaufPQ42D_cvs6dwuXpczKbLUNIE-5CxrIiSiBXAcipTnRcs0VQnKmUZjXSeMwJZjkEpCrpINYUioolMSFzklOSSjoObobe1zXunnOe7prP9EY4DzRKII5xC78KDS9rGOas0b62phN1zgvmRIz9w5AeO_Mixj9wNkf5FVXvx1-td-999GAIwCIyBC-uPgn4D0OF7pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397264082</pqid></control><display><type>article</type><title>Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis</title><source>Tech Science Press</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Yingjun ; Liao, Zhongyuan ; Shi, Shengyu ; Wang, Zhenpei ; Poh, Leong Hien</creator><creatorcontrib>Wang, Yingjun ; Liao, Zhongyuan ; Shi, Shengyu ; Wang, Zhenpei ; Poh, Leong Hien</creatorcontrib><description>Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity approaches.</description><identifier>ISSN: 1526-1492</identifier><identifier>ISSN: 1526-1506</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2020.08680</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Artificial neural networks ; Auxetic materials ; Bp Neural Network ; Data-Driven ; Design optimization ; ISOGEOMETRIC ANALYSIS ; Material properties ; Negative Poisson's Ratio ; Neural networks ; Petal-Shaped Auxetics ; Sensitivity analysis ; Structural Design</subject><ispartof>Computer modeling in engineering &amp; sciences, 2020-01, Vol.122 (2), p.433-458</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-559d4745d25b3c8fbd57f3f7e85934fbb5129b02ee32fd8f32d437c716db31bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yingjun</creatorcontrib><creatorcontrib>Liao, Zhongyuan</creatorcontrib><creatorcontrib>Shi, Shengyu</creatorcontrib><creatorcontrib>Wang, Zhenpei</creatorcontrib><creatorcontrib>Poh, Leong Hien</creatorcontrib><title>Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis</title><title>Computer modeling in engineering &amp; sciences</title><description>Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity approaches.</description><subject>Artificial neural networks</subject><subject>Auxetic materials</subject><subject>Bp Neural Network</subject><subject>Data-Driven</subject><subject>Design optimization</subject><subject>ISOGEOMETRIC ANALYSIS</subject><subject>Material properties</subject><subject>Negative Poisson's Ratio</subject><subject>Neural networks</subject><subject>Petal-Shaped Auxetics</subject><subject>Sensitivity analysis</subject><subject>Structural Design</subject><issn>1526-1492</issn><issn>1526-1506</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtPwzAQhCMEEqVw52iJc4q9jvO4UbU8KlUqUunZOI5dXOWF7SDKrydtQLCXncPMaPcLgmuCJxRiHN3KSrkJYMATnMYpPglGhEEcEobj018dZXAeXDi3w5jGNM1GwetceBHOrflQNVp720nfWVGiuXJmW6NV601lvoQ3TY10Y9Gz8qIM12-iVQWadp_KG-nQxpl6ixau2aqmUt4aiaa1KPfOuMvgTIvSqaufPQ42D_cvs6dwuXpczKbLUNIE-5CxrIiSiBXAcipTnRcs0VQnKmUZjXSeMwJZjkEpCrpINYUioolMSFzklOSSjoObobe1zXunnOe7prP9EY4DzRKII5xC78KDS9rGOas0b62phN1zgvmRIz9w5AeO_Mixj9wNkf5FVXvx1-td-999GAIwCIyBC-uPgn4D0OF7pw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Yingjun</creator><creator>Liao, Zhongyuan</creator><creator>Shi, Shengyu</creator><creator>Wang, Zhenpei</creator><creator>Poh, Leong Hien</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200101</creationdate><title>Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis</title><author>Wang, Yingjun ; Liao, Zhongyuan ; Shi, Shengyu ; Wang, Zhenpei ; Poh, Leong Hien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-559d4745d25b3c8fbd57f3f7e85934fbb5129b02ee32fd8f32d437c716db31bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Auxetic materials</topic><topic>Bp Neural Network</topic><topic>Data-Driven</topic><topic>Design optimization</topic><topic>ISOGEOMETRIC ANALYSIS</topic><topic>Material properties</topic><topic>Negative Poisson's Ratio</topic><topic>Neural networks</topic><topic>Petal-Shaped Auxetics</topic><topic>Sensitivity analysis</topic><topic>Structural Design</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yingjun</creatorcontrib><creatorcontrib>Liao, Zhongyuan</creatorcontrib><creatorcontrib>Shi, Shengyu</creatorcontrib><creatorcontrib>Wang, Zhenpei</creatorcontrib><creatorcontrib>Poh, Leong Hien</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yingjun</au><au>Liao, Zhongyuan</au><au>Shi, Shengyu</au><au>Wang, Zhenpei</au><au>Poh, Leong Hien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>122</volume><issue>2</issue><spage>433</spage><epage>458</epage><pages>433-458</pages><issn>1526-1492</issn><issn>1526-1506</issn><eissn>1526-1506</eissn><abstract>Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity approaches.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmes.2020.08680</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1492
ispartof Computer modeling in engineering & sciences, 2020-01, Vol.122 (2), p.433-458
issn 1526-1492
1526-1506
1526-1506
language eng
recordid cdi_proquest_journals_2397264082
source Tech Science Press; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Auxetic materials
Bp Neural Network
Data-Driven
Design optimization
ISOGEOMETRIC ANALYSIS
Material properties
Negative Poisson's Ratio
Neural networks
Petal-Shaped Auxetics
Sensitivity analysis
Structural Design
title Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ingen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Structural%20Design%20Optimization%20for%20Petal-Shaped%20Auxetics%20Using%20Isogeometric%20Analysis&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Wang,%20Yingjun&rft.date=2020-01-01&rft.volume=122&rft.issue=2&rft.spage=433&rft.epage=458&rft.pages=433-458&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2020.08680&rft_dat=%3Cproquest_ingen%3E2397264082%3C/proquest_ingen%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397264082&rft_id=info:pmid/&rft_ingid=tsp/cmes/2020/00000122/00000002/art00002&rfr_iscdi=true