Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis
Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design...
Gespeichert in:
Veröffentlicht in: | Computer modeling in engineering & sciences 2020-01, Vol.122 (2), p.433-458 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small
number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable
an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity approaches. |
---|---|
ISSN: | 1526-1492 1526-1506 1526-1506 |
DOI: | 10.32604/cmes.2020.08680 |