Anti-oxidative and anti-adipogenic effects of caffeine in an in vitro model of Graves’ orbitopathy

Oxidative stress and adipogenesis play key roles in the pathogenesis of Graves’ orbitopathy (GO). In this study, the therapeutic effects of caffeine on the reduction of oxidative stress and adipogenesis were evaluated in primary cultured GO orbital fibroblasts in vitro. Orbital fibroblasts were cult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ENDOCRINE JOURNAL 2020, Vol.67(4), pp.439-447
Hauptverfasser: Ko, JaeSang, Kim, Ji-Young, Kim, Jae-woo, Yoon, Jin Sook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidative stress and adipogenesis play key roles in the pathogenesis of Graves’ orbitopathy (GO). In this study, the therapeutic effects of caffeine on the reduction of oxidative stress and adipogenesis were evaluated in primary cultured GO orbital fibroblasts in vitro. Orbital fibroblasts were cultured from orbital connective tissues obtained from individuals with GO. Intracellular reactive oxygen species (ROS) levels induced by hydrogen peroxide or cigarette smoke extract and the expression of anti-oxidative enzymes were measured after caffeine treatment. After adipogenic differentiation and caffeine treatment, cells were stained with Oil Red O and the levels of peroxisome proliferator activator γ (PPARγ), C/EBPα, and C/EBPβ were determined by western blot analysis. Hydrogen peroxide and cigarette smoke extract increased the levels of intracellular ROS and anti-oxidative enzymes, which decreased in a dose-dependent manner upon pretreatment with caffeine in GO orbital fibroblasts. Oil Red-O staining results revealed a decrease in lipid droplets; furthermore, PPARγ, C/EBPα, and C/EBPβ protein expression levels were inhibited upon treatment with caffeine during adipocyte differentiation. In conclusion, caffeine decreased oxidative stress and adipogenesis in GO orbital fibroblasts in vitro. These findings may contribute to the development of new types of caffeine-containing pharmacological agents for use in the management of GO.
ISSN:0918-8959
1348-4540
DOI:10.1507/endocrj.EJ19-0521