Auto-Selection of Cluster Number in MMMs-Induced Fuzzy Co-Clustering

Fuzzy co-clustering induced by multinomial mixture models (FCCMM) is an effective method for analyzing such cooccurrence information data as document-keyword frequencies, but often suffers from the cluster validation problem due to a priori selection of cluster numbers. In this paper, a modified mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 2020/04/15, Vol.32(2), pp.678-685
Hauptverfasser: UBUKATA, Seiki, YANAGISAWA, Kazuki, NOTSU, Akira, HONDA, Katsuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 2
container_start_page 678
container_title Journal of Japan Society for Fuzzy Theory and Intelligent Informatics
container_volume 32
creator UBUKATA, Seiki
YANAGISAWA, Kazuki
NOTSU, Akira
HONDA, Katsuhiro
description Fuzzy co-clustering induced by multinomial mixture models (FCCMM) is an effective method for analyzing such cooccurrence information data as document-keyword frequencies, but often suffers from the cluster validation problem due to a priori selection of cluster numbers. In this paper, a modified model of robust cluster number selection in Gaussian mixture models is proposed, where the optimal number of clusters are automatically extracted in FCCMM through rejection of unnecessary clusters considering a novel penalty on cluster volumes.
doi_str_mv 10.3156/jsoft.32.2_678
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397245029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397245029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1638-2564b191a6e91f073bbcca1d20e35ae7cd9d2887518851b4c029c97d42c52413</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMkdidvBHHNsTqgKFSi0MdLccxymJ0rjYydD-ekxbIaY76Z7n7vQCcI9RSjHLH9vg6iGlJCUq5-ICTLAQGHKC6GXsacYhlyK_BjchtAjlEjE8Ac-zcXDw03bWDI3rE1cnRTeGwfrkfdyWsTR9slqtAlz01WhslczHw2GfFA6euabf3IKrWnfB3p3rFKznL-viDS4_XhfFbAkNzqmAhOVZiSXWuZW4RpyWpTEaVwRZyrTlppIVEYKz-DjDZWYQkUbyKiOGkQzTKXg4rd159z3aMKjWjb6PFxWhkpOMRSFS6Yky3oXgba12vtlqv1cYqd-g1DEoRYk6BhWFp5PQhkFv7B-u_dCYzv7H6dH4m5gv7ZXt6Q-D7nJ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397245029</pqid></control><display><type>article</type><title>Auto-Selection of Cluster Number in MMMs-Induced Fuzzy Co-Clustering</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>UBUKATA, Seiki ; YANAGISAWA, Kazuki ; NOTSU, Akira ; HONDA, Katsuhiro</creator><creatorcontrib>UBUKATA, Seiki ; YANAGISAWA, Kazuki ; NOTSU, Akira ; HONDA, Katsuhiro</creatorcontrib><description>Fuzzy co-clustering induced by multinomial mixture models (FCCMM) is an effective method for analyzing such cooccurrence information data as document-keyword frequencies, but often suffers from the cluster validation problem due to a priori selection of cluster numbers. In this paper, a modified model of robust cluster number selection in Gaussian mixture models is proposed, where the optimal number of clusters are automatically extracted in FCCMM through rejection of unnecessary clusters considering a novel penalty on cluster volumes.</description><identifier>ISSN: 1347-7986</identifier><identifier>EISSN: 1881-7203</identifier><identifier>DOI: 10.3156/jsoft.32.2_678</identifier><language>eng</language><publisher>Iizuka: Japan Society for Fuzzy Theory and Intelligent Informatics</publisher><subject>cluster number estimation ; Clustering ; co-clustering ; fuzzy clustering ; Probabilistic models ; robust EM algorithm</subject><ispartof>Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2020/04/15, Vol.32(2), pp.678-685</ispartof><rights>2020 Japan Society for Fuzzy Theory and Intelligent Informatics</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1638-2564b191a6e91f073bbcca1d20e35ae7cd9d2887518851b4c029c97d42c52413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>UBUKATA, Seiki</creatorcontrib><creatorcontrib>YANAGISAWA, Kazuki</creatorcontrib><creatorcontrib>NOTSU, Akira</creatorcontrib><creatorcontrib>HONDA, Katsuhiro</creatorcontrib><title>Auto-Selection of Cluster Number in MMMs-Induced Fuzzy Co-Clustering</title><title>Journal of Japan Society for Fuzzy Theory and Intelligent Informatics</title><addtitle>J. SOFT</addtitle><description>Fuzzy co-clustering induced by multinomial mixture models (FCCMM) is an effective method for analyzing such cooccurrence information data as document-keyword frequencies, but often suffers from the cluster validation problem due to a priori selection of cluster numbers. In this paper, a modified model of robust cluster number selection in Gaussian mixture models is proposed, where the optimal number of clusters are automatically extracted in FCCMM through rejection of unnecessary clusters considering a novel penalty on cluster volumes.</description><subject>cluster number estimation</subject><subject>Clustering</subject><subject>co-clustering</subject><subject>fuzzy clustering</subject><subject>Probabilistic models</subject><subject>robust EM algorithm</subject><issn>1347-7986</issn><issn>1881-7203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMkdidvBHHNsTqgKFSi0MdLccxymJ0rjYydD-ekxbIaY76Z7n7vQCcI9RSjHLH9vg6iGlJCUq5-ICTLAQGHKC6GXsacYhlyK_BjchtAjlEjE8Ac-zcXDw03bWDI3rE1cnRTeGwfrkfdyWsTR9slqtAlz01WhslczHw2GfFA6euabf3IKrWnfB3p3rFKznL-viDS4_XhfFbAkNzqmAhOVZiSXWuZW4RpyWpTEaVwRZyrTlppIVEYKz-DjDZWYQkUbyKiOGkQzTKXg4rd159z3aMKjWjb6PFxWhkpOMRSFS6Yky3oXgba12vtlqv1cYqd-g1DEoRYk6BhWFp5PQhkFv7B-u_dCYzv7H6dH4m5gv7ZXt6Q-D7nJ7</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>UBUKATA, Seiki</creator><creator>YANAGISAWA, Kazuki</creator><creator>NOTSU, Akira</creator><creator>HONDA, Katsuhiro</creator><general>Japan Society for Fuzzy Theory and Intelligent Informatics</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200415</creationdate><title>Auto-Selection of Cluster Number in MMMs-Induced Fuzzy Co-Clustering</title><author>UBUKATA, Seiki ; YANAGISAWA, Kazuki ; NOTSU, Akira ; HONDA, Katsuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1638-2564b191a6e91f073bbcca1d20e35ae7cd9d2887518851b4c029c97d42c52413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cluster number estimation</topic><topic>Clustering</topic><topic>co-clustering</topic><topic>fuzzy clustering</topic><topic>Probabilistic models</topic><topic>robust EM algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>UBUKATA, Seiki</creatorcontrib><creatorcontrib>YANAGISAWA, Kazuki</creatorcontrib><creatorcontrib>NOTSU, Akira</creatorcontrib><creatorcontrib>HONDA, Katsuhiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Japan Society for Fuzzy Theory and Intelligent Informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UBUKATA, Seiki</au><au>YANAGISAWA, Kazuki</au><au>NOTSU, Akira</au><au>HONDA, Katsuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auto-Selection of Cluster Number in MMMs-Induced Fuzzy Co-Clustering</atitle><jtitle>Journal of Japan Society for Fuzzy Theory and Intelligent Informatics</jtitle><addtitle>J. SOFT</addtitle><date>2020-04-15</date><risdate>2020</risdate><volume>32</volume><issue>2</issue><spage>678</spage><epage>685</epage><pages>678-685</pages><issn>1347-7986</issn><eissn>1881-7203</eissn><abstract>Fuzzy co-clustering induced by multinomial mixture models (FCCMM) is an effective method for analyzing such cooccurrence information data as document-keyword frequencies, but often suffers from the cluster validation problem due to a priori selection of cluster numbers. In this paper, a modified model of robust cluster number selection in Gaussian mixture models is proposed, where the optimal number of clusters are automatically extracted in FCCMM through rejection of unnecessary clusters considering a novel penalty on cluster volumes.</abstract><cop>Iizuka</cop><pub>Japan Society for Fuzzy Theory and Intelligent Informatics</pub><doi>10.3156/jsoft.32.2_678</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-7986
ispartof Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2020/04/15, Vol.32(2), pp.678-685
issn 1347-7986
1881-7203
language eng
recordid cdi_proquest_journals_2397245029
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects cluster number estimation
Clustering
co-clustering
fuzzy clustering
Probabilistic models
robust EM algorithm
title Auto-Selection of Cluster Number in MMMs-Induced Fuzzy Co-Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auto-Selection%20of%20Cluster%20Number%20in%20MMMs-Induced%20Fuzzy%20Co-Clustering&rft.jtitle=Journal%20of%20Japan%20Society%20for%20Fuzzy%20Theory%20and%20Intelligent%20Informatics&rft.au=UBUKATA,%20Seiki&rft.date=2020-04-15&rft.volume=32&rft.issue=2&rft.spage=678&rft.epage=685&rft.pages=678-685&rft.issn=1347-7986&rft.eissn=1881-7203&rft_id=info:doi/10.3156/jsoft.32.2_678&rft_dat=%3Cproquest_cross%3E2397245029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397245029&rft_id=info:pmid/&rfr_iscdi=true