Auto-Selection of Cluster Number in MMMs-Induced Fuzzy Co-Clustering

Fuzzy co-clustering induced by multinomial mixture models (FCCMM) is an effective method for analyzing such cooccurrence information data as document-keyword frequencies, but often suffers from the cluster validation problem due to a priori selection of cluster numbers. In this paper, a modified mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 2020/04/15, Vol.32(2), pp.678-685
Hauptverfasser: UBUKATA, Seiki, YANAGISAWA, Kazuki, NOTSU, Akira, HONDA, Katsuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fuzzy co-clustering induced by multinomial mixture models (FCCMM) is an effective method for analyzing such cooccurrence information data as document-keyword frequencies, but often suffers from the cluster validation problem due to a priori selection of cluster numbers. In this paper, a modified model of robust cluster number selection in Gaussian mixture models is proposed, where the optimal number of clusters are automatically extracted in FCCMM through rejection of unnecessary clusters considering a novel penalty on cluster volumes.
ISSN:1347-7986
1881-7203
DOI:10.3156/jsoft.32.2_678