Utilization of Fly Ashes from Fluidized Bed Combustion: A Review

Traditionally fly ash is thought to be glassy, spherical particle originating from pulverized coal combustion (PCC) at temperature up to 1700 °C. However, nowadays fluidized bed combustion (FBC) technology is spreading quickly around the world as it is an efficient and environmentally friendly metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-04, Vol.12 (7), p.2988
Hauptverfasser: Ohenoja, Katja, Pesonen, Janne, Yliniemi, Juho, Illikainen, Mirja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditionally fly ash is thought to be glassy, spherical particle originating from pulverized coal combustion (PCC) at temperature up to 1700 °C. However, nowadays fluidized bed combustion (FBC) technology is spreading quickly around the world as it is an efficient and environmentally friendly method. FBC is also able to utilize mixtures of low-grade solid fuels (e.g., coal, lignite, biomass, and waste) that have fluctuating quality, composition, and moisture contents. However, this leads to a high variation in the produced fly ash quality, unlike PCC fly ash, and hence challenges when attempting to utilize this fly ash. In this study, the utilization of fluidized bed combustion fly ash (FBCFA) was reviewed using the Scopus database. The most promising utilization target for FBCFA from biomass combustion is as a fertilizer and soil amendment. In construction, the FBCFA from various fuels is utilized as cement replacement material, in non-cement binders, as lightweight aggregates and cast-concrete products. Other types of construction applications include mine backfilling material, soil stabilizer, and road construction material. There are also other promising applications for FBCFA utilization, such as catalysts support material and utilization in waste stabilization.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12072988