Gadolinium-based olivine phosphate for upgradation of cathode material in lithium ion battery

A structurally modified cathode material for Lithium ion battery is reported in this study. This study was based on first principle calculations to study the electronic, ionic, and diffusion properties of olivine phosphate family of cathode material. The attempt was made to modify the conventionally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-05, Vol.31 (10), p.7324-7334
Hauptverfasser: Ullah, Irslan, Majid, Abdul, Khan, Muhammad Isa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A structurally modified cathode material for Lithium ion battery is reported in this study. This study was based on first principle calculations to study the electronic, ionic, and diffusion properties of olivine phosphate family of cathode material. The attempt was made to modify the conventionally used cathode material LiFePO 4 by substituting Rare earth Gd on Fe sites. The Gd-4 f’ s electrostatic interaction, exchange coupling, impact on lithium’s intercalation, and ability to modify the crystal structure upon doping in the crystalline environment of the host have been studied and discussed in detail. The calculations on electronic structure, charge transfer between atoms, Li intercalation voltage, electron localization function (ELF) analysis, steric interaction between Li ion and metal cation (Fe and Gd) in both LiFePO 4 and LiGdPO 4 were carried out using prescribed methods. This trend of intercalation is related to structural relaxation in the vicinity of Gd which expedites the Li ion mobility without compromising the structural stability of the material. The analysis of interatomic steric interactions and ELF analysis helped to visualize the interactions in the cathode material. The findings of this study revealed that LiGdPO 4 could be a potential candidate for its use as cathode in lithium ion battery and relevant devices.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-019-02471-x