A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface
Over the past few years, various nanoparticle-supported precious metal-based catalysts have been investigated to reduce the emission of harmful substances from automobiles. Generally, precious metal nanoparticle-based exhaust gas catalysts are prepared using the impregnation method. However, these c...
Gespeichert in:
Veröffentlicht in: | Catalysts 2020-05, Vol.10 (5), p.472 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 472 |
container_title | Catalysts |
container_volume | 10 |
creator | Sasaki, Teruyoshi Horino, Yusuke Ohtake, Tadashi Ogawa, Kazufumi Suzaki, Yoshifumi |
description | Over the past few years, various nanoparticle-supported precious metal-based catalysts have been investigated to reduce the emission of harmful substances from automobiles. Generally, precious metal nanoparticle-based exhaust gas catalysts are prepared using the impregnation method. However, these catalysts suffer from the low catalytic activity of the precious metal nanoparticles involved. Therefore, in this study, we developed a novel method for preparing highly efficient glass fiber-supported Pt nanoparticle catalysts. We uniformly deposited a single layer of platinum particles on the support surface using a chemically adsorbed monomolecular film. The octane combustion performance of the resulting catalyst was compared with that of a commercial catalyst. The precious metal loading ratio of the proposed catalyst was approximately seven times that of the commercial catalyst. Approximately one-twelfth of the mass of the proposed catalyst exhibited a performance comparable to that of the commercial catalyst. Thus, the synthesis method used herein can be used to reduce the weight, size, and manufacturing cost of exhaust gas purification devices used in cars. |
doi_str_mv | 10.3390/catal10050472 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2396559375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396559375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-5e5f4e0d4c76a0fc674bc5ad7b7a14a06d4dd8569356f9468a8b2fa1d8648b383</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWGqX7gOuR5PJc5al9CFULai4HO7koVPGSU3Sxfx7R-pC7-ZcDt-9Bw5C15TcMlaROwMZOkqIIFyVZ2hSEsUKzjg__7NfollKezJORZmmYoLe5njTvn90A15635rW9Rk_hD50MLiIdxk_Qh8OEHNrOocXPyFDyngX3Wg6i0OPAa87SAmv2mY8eT5GD8ZdoQsPXXKzX52i19XyZbEptk_r-8V8WxhGeC6EE547YrlREog3UvHGCLCqUUA5EGm5tVrIignpKy416Kb0QK2WXDdMsym6Of09xPB1dCnX-3CM_RhZl6ySQlRMiZEqTpSJIaXofH2I7SfEoaak_qmv_lcf-war3GJt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396559375</pqid></control><display><type>article</type><title>A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sasaki, Teruyoshi ; Horino, Yusuke ; Ohtake, Tadashi ; Ogawa, Kazufumi ; Suzaki, Yoshifumi</creator><creatorcontrib>Sasaki, Teruyoshi ; Horino, Yusuke ; Ohtake, Tadashi ; Ogawa, Kazufumi ; Suzaki, Yoshifumi</creatorcontrib><description>Over the past few years, various nanoparticle-supported precious metal-based catalysts have been investigated to reduce the emission of harmful substances from automobiles. Generally, precious metal nanoparticle-based exhaust gas catalysts are prepared using the impregnation method. However, these catalysts suffer from the low catalytic activity of the precious metal nanoparticles involved. Therefore, in this study, we developed a novel method for preparing highly efficient glass fiber-supported Pt nanoparticle catalysts. We uniformly deposited a single layer of platinum particles on the support surface using a chemically adsorbed monomolecular film. The octane combustion performance of the resulting catalyst was compared with that of a commercial catalyst. The precious metal loading ratio of the proposed catalyst was approximately seven times that of the commercial catalyst. Approximately one-twelfth of the mass of the proposed catalyst exhibited a performance comparable to that of the commercial catalyst. Thus, the synthesis method used herein can be used to reduce the weight, size, and manufacturing cost of exhaust gas purification devices used in cars.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal10050472</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Catalysts ; Catalytic activity ; Chemical reactions ; Chemical synthesis ; Emission analysis ; Emissions control ; Ethanol ; Exhaust gases ; Glass fibers ; Heat ; Hydrocarbons ; Metals ; Monolayers ; Monomolecular films ; Nanoparticles ; Noble metals ; Platinum ; Pollutants ; Production costs ; Studies ; Weight reduction</subject><ispartof>Catalysts, 2020-05, Vol.10 (5), p.472</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-5e5f4e0d4c76a0fc674bc5ad7b7a14a06d4dd8569356f9468a8b2fa1d8648b383</citedby><cites>FETCH-LOGICAL-c304t-5e5f4e0d4c76a0fc674bc5ad7b7a14a06d4dd8569356f9468a8b2fa1d8648b383</cites><orcidid>0000-0002-2065-9887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27902,27903</link.rule.ids></links><search><creatorcontrib>Sasaki, Teruyoshi</creatorcontrib><creatorcontrib>Horino, Yusuke</creatorcontrib><creatorcontrib>Ohtake, Tadashi</creatorcontrib><creatorcontrib>Ogawa, Kazufumi</creatorcontrib><creatorcontrib>Suzaki, Yoshifumi</creatorcontrib><title>A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface</title><title>Catalysts</title><description>Over the past few years, various nanoparticle-supported precious metal-based catalysts have been investigated to reduce the emission of harmful substances from automobiles. Generally, precious metal nanoparticle-based exhaust gas catalysts are prepared using the impregnation method. However, these catalysts suffer from the low catalytic activity of the precious metal nanoparticles involved. Therefore, in this study, we developed a novel method for preparing highly efficient glass fiber-supported Pt nanoparticle catalysts. We uniformly deposited a single layer of platinum particles on the support surface using a chemically adsorbed monomolecular film. The octane combustion performance of the resulting catalyst was compared with that of a commercial catalyst. The precious metal loading ratio of the proposed catalyst was approximately seven times that of the commercial catalyst. Approximately one-twelfth of the mass of the proposed catalyst exhibited a performance comparable to that of the commercial catalyst. Thus, the synthesis method used herein can be used to reduce the weight, size, and manufacturing cost of exhaust gas purification devices used in cars.</description><subject>Carbon</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Emission analysis</subject><subject>Emissions control</subject><subject>Ethanol</subject><subject>Exhaust gases</subject><subject>Glass fibers</subject><subject>Heat</subject><subject>Hydrocarbons</subject><subject>Metals</subject><subject>Monolayers</subject><subject>Monomolecular films</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Platinum</subject><subject>Pollutants</subject><subject>Production costs</subject><subject>Studies</subject><subject>Weight reduction</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkEtLAzEUhYMoWGqX7gOuR5PJc5al9CFULai4HO7koVPGSU3Sxfx7R-pC7-ZcDt-9Bw5C15TcMlaROwMZOkqIIFyVZ2hSEsUKzjg__7NfollKezJORZmmYoLe5njTvn90A15635rW9Rk_hD50MLiIdxk_Qh8OEHNrOocXPyFDyngX3Wg6i0OPAa87SAmv2mY8eT5GD8ZdoQsPXXKzX52i19XyZbEptk_r-8V8WxhGeC6EE547YrlREog3UvHGCLCqUUA5EGm5tVrIignpKy416Kb0QK2WXDdMsym6Of09xPB1dCnX-3CM_RhZl6ySQlRMiZEqTpSJIaXofH2I7SfEoaak_qmv_lcf-war3GJt</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sasaki, Teruyoshi</creator><creator>Horino, Yusuke</creator><creator>Ohtake, Tadashi</creator><creator>Ogawa, Kazufumi</creator><creator>Suzaki, Yoshifumi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2065-9887</orcidid></search><sort><creationdate>20200501</creationdate><title>A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface</title><author>Sasaki, Teruyoshi ; Horino, Yusuke ; Ohtake, Tadashi ; Ogawa, Kazufumi ; Suzaki, Yoshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-5e5f4e0d4c76a0fc674bc5ad7b7a14a06d4dd8569356f9468a8b2fa1d8648b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Emission analysis</topic><topic>Emissions control</topic><topic>Ethanol</topic><topic>Exhaust gases</topic><topic>Glass fibers</topic><topic>Heat</topic><topic>Hydrocarbons</topic><topic>Metals</topic><topic>Monolayers</topic><topic>Monomolecular films</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Platinum</topic><topic>Pollutants</topic><topic>Production costs</topic><topic>Studies</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasaki, Teruyoshi</creatorcontrib><creatorcontrib>Horino, Yusuke</creatorcontrib><creatorcontrib>Ohtake, Tadashi</creatorcontrib><creatorcontrib>Ogawa, Kazufumi</creatorcontrib><creatorcontrib>Suzaki, Yoshifumi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasaki, Teruyoshi</au><au>Horino, Yusuke</au><au>Ohtake, Tadashi</au><au>Ogawa, Kazufumi</au><au>Suzaki, Yoshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface</atitle><jtitle>Catalysts</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>472</spage><pages>472-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Over the past few years, various nanoparticle-supported precious metal-based catalysts have been investigated to reduce the emission of harmful substances from automobiles. Generally, precious metal nanoparticle-based exhaust gas catalysts are prepared using the impregnation method. However, these catalysts suffer from the low catalytic activity of the precious metal nanoparticles involved. Therefore, in this study, we developed a novel method for preparing highly efficient glass fiber-supported Pt nanoparticle catalysts. We uniformly deposited a single layer of platinum particles on the support surface using a chemically adsorbed monomolecular film. The octane combustion performance of the resulting catalyst was compared with that of a commercial catalyst. The precious metal loading ratio of the proposed catalyst was approximately seven times that of the commercial catalyst. Approximately one-twelfth of the mass of the proposed catalyst exhibited a performance comparable to that of the commercial catalyst. Thus, the synthesis method used herein can be used to reduce the weight, size, and manufacturing cost of exhaust gas purification devices used in cars.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal10050472</doi><orcidid>https://orcid.org/0000-0002-2065-9887</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2020-05, Vol.10 (5), p.472 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_2396559375 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Carbon Catalysts Catalytic activity Chemical reactions Chemical synthesis Emission analysis Emissions control Ethanol Exhaust gases Glass fibers Heat Hydrocarbons Metals Monolayers Monomolecular films Nanoparticles Noble metals Platinum Pollutants Production costs Studies Weight reduction |
title | A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Efficient%20Monolayer%20Pt%20Nanoparticle%20Catalyst%20Prepared%20on%20a%20Glass%20Fiber%20Surface&rft.jtitle=Catalysts&rft.au=Sasaki,%20Teruyoshi&rft.date=2020-05-01&rft.volume=10&rft.issue=5&rft.spage=472&rft.pages=472-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal10050472&rft_dat=%3Cproquest_cross%3E2396559375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396559375&rft_id=info:pmid/&rfr_iscdi=true |