A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface
Over the past few years, various nanoparticle-supported precious metal-based catalysts have been investigated to reduce the emission of harmful substances from automobiles. Generally, precious metal nanoparticle-based exhaust gas catalysts are prepared using the impregnation method. However, these c...
Gespeichert in:
Veröffentlicht in: | Catalysts 2020-05, Vol.10 (5), p.472 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the past few years, various nanoparticle-supported precious metal-based catalysts have been investigated to reduce the emission of harmful substances from automobiles. Generally, precious metal nanoparticle-based exhaust gas catalysts are prepared using the impregnation method. However, these catalysts suffer from the low catalytic activity of the precious metal nanoparticles involved. Therefore, in this study, we developed a novel method for preparing highly efficient glass fiber-supported Pt nanoparticle catalysts. We uniformly deposited a single layer of platinum particles on the support surface using a chemically adsorbed monomolecular film. The octane combustion performance of the resulting catalyst was compared with that of a commercial catalyst. The precious metal loading ratio of the proposed catalyst was approximately seven times that of the commercial catalyst. Approximately one-twelfth of the mass of the proposed catalyst exhibited a performance comparable to that of the commercial catalyst. Thus, the synthesis method used herein can be used to reduce the weight, size, and manufacturing cost of exhaust gas purification devices used in cars. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal10050472 |