Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs
A deep-learning system that was applied to 14,341 fundus photographs differentiated optic disks with papilledema from normal disks with 96.4% sensitivity and 84.7% specificity in an external-testing data set. The prevalence of papilledema was 9.5%, yielding positive and negative predictive values of...
Gespeichert in:
Veröffentlicht in: | The New England journal of medicine 2020-04, Vol.382 (18), p.1687-1695 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A deep-learning system that was applied to 14,341 fundus photographs differentiated optic disks with papilledema from normal disks with 96.4% sensitivity and 84.7% specificity in an external-testing data set. The prevalence of papilledema was 9.5%, yielding positive and negative predictive values of 39.8% and 99.6%, respectively. |
---|---|
ISSN: | 0028-4793 1533-4406 |
DOI: | 10.1056/NEJMoa1917130 |