Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs

A deep-learning system that was applied to 14,341 fundus photographs differentiated optic disks with papilledema from normal disks with 96.4% sensitivity and 84.7% specificity in an external-testing data set. The prevalence of papilledema was 9.5%, yielding positive and negative predictive values of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New England journal of medicine 2020-04, Vol.382 (18), p.1687-1695
Hauptverfasser: Milea, Dan, Najjar, Raymond P, Zhubo, Jiang, Ting, Daniel, Vasseneix, Caroline, Xu, Xinxing, Aghsaei Fard, Masoud, Fonseca, Pedro, Vanikieti, Kavin, Lagrèze, Wolf A, La Morgia, Chiara, Cheung, Carol Y, Hamann, Steffen, Chiquet, Christophe, Sanda, Nicolae, Yang, Hui, Mejico, Luis J, Rougier, Marie-Bénédicte, Kho, Richard, Thi Ha Chau, Tran, Singhal, Shweta, Gohier, Philippe, Clermont-Vignal, Catherine, Cheng, Ching-Yu, Jonas, Jost B, Yu-Wai-Man, Patrick, Fraser, Clare L, Chen, John J, Ambika, Selvakumar, Miller, Neil R, Liu, Yong, Newman, Nancy J, Wong, Tien Y, Biousse, Valérie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A deep-learning system that was applied to 14,341 fundus photographs differentiated optic disks with papilledema from normal disks with 96.4% sensitivity and 84.7% specificity in an external-testing data set. The prevalence of papilledema was 9.5%, yielding positive and negative predictive values of 39.8% and 99.6%, respectively.
ISSN:0028-4793
1533-4406
DOI:10.1056/NEJMoa1917130