Dose and duration-dependent toxicological evaluation of lead acetate in chicks
Lead is one of the utmost contaminated and dangerous heavy metals. This toxicant ultimately enters into the human body through the food chain and accumulated in the body because the animal/human body has not an appropriate mechanism to excrete it from the body. The main objective of the present rese...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2020-05, Vol.27 (13), p.15149-15164 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lead is one of the utmost contaminated and dangerous heavy metals. This toxicant ultimately enters into the human body through the food chain and accumulated in the body because the animal/human body has not an appropriate mechanism to excrete it from the body. The main objective of the present research was to assess the toxicological effects of lead on body weights, biochemical, and hematological parameters of chickens and also to measure its bioaccumulation in the brain. Lead acetate was administrated orally at doses of 0, 71, 142, 213, and 284 mg/kg of body weight of chicken for groups A, B, C, D, and E, respectively. Along with determination of biometry of all experimental chicks, hematological [hemoglobin (Hb), packed cell volume (PCV), mean corpuscular hemoglobin concentration (MCHC), total erythrocyte count (TEC), white blood cells (WBCs), leukocyte differential count (LDC)] and biochemical [low density lipoprotein (LDL), total protein, high-density lipoprotein (HDL), and alanine aminotransferase (ALT)] parameters were measured. The present study showed that the bodyweight of chickens was not affected significantly by lead acetate exposure. The levels of MCHC, PCV, TEC, Hb, LDL, HDL, and total protein were found to be significantly decreased while WBC, LDC, and ALT profile were enhanced due to administration of lead acetate. Bioaccumulation of lead acetate was found to be higher in the brain. We conclude that the chronic administration of lead acetate affected the blood and biochemical profile of exposed chicken. These effects might be due to the accumulation of the chemical in certain vital organ(s). However, further studies in the future are suggested to refine such findings. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-020-08016-8 |