Low Velocity Impact Response and Failure Assessment of Textile Reinforced Concrete Slabs

Present paper proposes a methodology by combining finite element method with smoothed particle hydrodynamics to simulate the response of textile reinforced concrete (TRC) slabs under low velocity impact loading. For the constitutive modelling in the finite element method, the concrete damaged plasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2017, Vol.53 (4), p.291
Hauptverfasser: Subashini, I, Gopinath, Smitha, Aahrthy, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present paper proposes a methodology by combining finite element method with smoothed particle hydrodynamics to simulate the response of textile reinforced concrete (TRC) slabs under low velocity impact loading. For the constitutive modelling in the finite element method, the concrete damaged plasticity model was employed to the cementitious binder of TRC and Von-Mises criterion was used for the textile reinforcement. Strain dependent smoothed particle hydrodynamics (SPH) was used to assess the damage and failure pattern of TRC slabs. Numerical simulation was carried out on TRC slabs with two different volume fraction of glass textile reinforcement to predict the energy absorption and damage by coupling finite element method with SPH. Parametric studies were also conducted for simulating the effect of number of textile layers in TRC under impact. It is concluded that the proposed methodology well predicts the damage in TRC slabs at various locations. The results were also analysed using two parameter Weibull distribution and the impact failure strength is presented in terms of reliability function. The results indicated that the Weibull distribution allows describing the failure in terms of reliability and safety limits.
ISSN:1546-2218
1546-2226
DOI:10.3970/cmc.2017.053.291