THINNING AND MULTILEVEL MONTE CARLO METHODS FOR PIECEWISE DETERMINISTIC (MARKOV) PROCESSES WITH AN APPLICATION TO A STOCHASTIC MORRIS–LECAR MODEL

In the first part of this paper we study approximations of trajectories of piecewise deterministic processes (PDPs) when the flow is not given explicitly by the thinning method. We also establish a strong error estimate for PDPs as well as a weak error expansion for piecewise deterministic Markov pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2020-03, Vol.52 (1), p.138-172
Hauptverfasser: LEMAIRE, VINCENT, THIEULLEN, MICHÈLE, THOMAS, NICOLAS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the first part of this paper we study approximations of trajectories of piecewise deterministic processes (PDPs) when the flow is not given explicitly by the thinning method. We also establish a strong error estimate for PDPs as well as a weak error expansion for piecewise deterministic Markov processes (PDMPs). These estimates are the building blocks of the multilevel Monte Carlo (MLMC) method, which we study in the second part. The coupling required by the MLMC is based on the thinning procedure. In the third part we apply these results to a two-dimensional Morris–Lecar model with stochastic ion channels. In the range of our simulations the MLMC estimator outperforms classical Monte Carlo.
ISSN:0001-8678
1475-6064
DOI:10.1017/apr.2019.55