Synthesis of Gallium-Doped Zinc Oxide (GZO) Nanoparticles for GZO/Silver Nanowire Nanocomposite Transparent Conductive Electrodes
Gallium (Ga)-doped zinc oxide nanoparticles (GZO-NPs) have been synthesized using a heating-up method. The Ga doping concentration strongly affected the particle size, distribution, and bandgap energy of the GZO-NPs. When the Ga concentration was increased from 0% to 5%, the average size of the GZO-...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2020-06, Vol.49 (6), p.3964-3971 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gallium (Ga)-doped zinc oxide nanoparticles (GZO-NPs) have been synthesized using a heating-up method. The Ga doping concentration strongly affected the particle size, distribution, and bandgap energy of the GZO-NPs. When the Ga concentration was increased from 0% to 5%, the average size of the GZO-NPs decreased from 57 nm to 16 nm while the bandgap increased from 3.14 eV to 3.26 eV. On further increase of the Ga content to 7% and 9%, the particle size increased while the bandgap narrowed. The GZO-NPs synthesized with 5% Ga showed the best uniformity and smallest average diameter of approximately 16 nm. The GZO-NPs with 5% Ga were applied to reduce the mechanical contact between the AgNWs in GZO/silver nanowire (AgNW) composite for application as a transparent conductive electrode, yielding
R
SH
= 18.1 Ω/□,
T
= 77.8% at 550 nm, and
σ
DC
/
σ
Op
= 77.53. These results indicate that such GZO-NPs are a very promising nanocrystalline ink precursor for printing thin films for application in nanocomposite transparent conductive electrodes. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-020-08129-3 |