Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing
Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to a...
Gespeichert in:
Veröffentlicht in: | Water resources research 2020-02, Vol.56 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Water resources research |
container_volume | 56 |
creator | Nearing, Grey S. Ruddell, Benjamin L. Bennett, Andrew R. Prieto, Cristina Gupta, Hoshin V. |
description | Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective.
Key Points
We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable
Develop a perspective on hypothesis testing and model evaluation based on information theory |
doi_str_mv | 10.1029/2019WR024918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395337110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395337110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3682-cab7c073916b095c5c1fd9d61a22079834886e7b50a8eddb3cdd59425dfa592e3</originalsourceid><addsrcrecordid>eNp90E9LwzAABfAgCs7pzQ8Q8Go1f5vmJDKnGwwdtbJjSZN0y9iamXSOfnsr8-DJ07v8eA8eANcY3WFE5D1BWC5yRJjE2QkYYMlYIqSgp2CAEKMJplKcg4sY1whhxlMxAMWTtxFOm9qHrWqdb2Cxsj50cB78lzMWKvhqD3CugjJuuYW9g2MV2hV818422j7ASbfz7cpGF2FhY-ua5SU4q9Um2qvfHIKP53ExmiSzt5fp6HGWKJpmJNGqEhoJKnFaIck117g20qRYEYKEzCjLstSKiiOVWWMqqo3hkhFuasUlsXQIbo69u-A_9_12ufb70PSTJaGSUyowRr26PSodfIzB1uUuuK0KXYlR-fNb-fe3ntMjP7iN7f615SIf5YRRSeg31qNuJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395337110</pqid></control><display><type>article</type><title>Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nearing, Grey S. ; Ruddell, Benjamin L. ; Bennett, Andrew R. ; Prieto, Cristina ; Gupta, Hoshin V.</creator><creatorcontrib>Nearing, Grey S. ; Ruddell, Benjamin L. ; Bennett, Andrew R. ; Prieto, Cristina ; Gupta, Hoshin V.</creatorcontrib><description>Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective.
Key Points
We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable
Develop a perspective on hypothesis testing and model evaluation based on information theory</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2019WR024918</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>epistemic uncertainty ; Hypotheses ; Hypothesis testing ; Information theory ; model evaluation ; Model testing ; Modelling ; Testing</subject><ispartof>Water resources research, 2020-02, Vol.56 (2), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3682-cab7c073916b095c5c1fd9d61a22079834886e7b50a8eddb3cdd59425dfa592e3</citedby><cites>FETCH-LOGICAL-a3682-cab7c073916b095c5c1fd9d61a22079834886e7b50a8eddb3cdd59425dfa592e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019WR024918$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019WR024918$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Nearing, Grey S.</creatorcontrib><creatorcontrib>Ruddell, Benjamin L.</creatorcontrib><creatorcontrib>Bennett, Andrew R.</creatorcontrib><creatorcontrib>Prieto, Cristina</creatorcontrib><creatorcontrib>Gupta, Hoshin V.</creatorcontrib><title>Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing</title><title>Water resources research</title><description>Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective.
Key Points
We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable
Develop a perspective on hypothesis testing and model evaluation based on information theory</description><subject>epistemic uncertainty</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Information theory</subject><subject>model evaluation</subject><subject>Model testing</subject><subject>Modelling</subject><subject>Testing</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAABfAgCs7pzQ8Q8Go1f5vmJDKnGwwdtbJjSZN0y9iamXSOfnsr8-DJ07v8eA8eANcY3WFE5D1BWC5yRJjE2QkYYMlYIqSgp2CAEKMJplKcg4sY1whhxlMxAMWTtxFOm9qHrWqdb2Cxsj50cB78lzMWKvhqD3CugjJuuYW9g2MV2hV818422j7ASbfz7cpGF2FhY-ua5SU4q9Um2qvfHIKP53ExmiSzt5fp6HGWKJpmJNGqEhoJKnFaIck117g20qRYEYKEzCjLstSKiiOVWWMqqo3hkhFuasUlsXQIbo69u-A_9_12ufb70PSTJaGSUyowRr26PSodfIzB1uUuuK0KXYlR-fNb-fe3ntMjP7iN7f615SIf5YRRSeg31qNuJg</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Nearing, Grey S.</creator><creator>Ruddell, Benjamin L.</creator><creator>Bennett, Andrew R.</creator><creator>Prieto, Cristina</creator><creator>Gupta, Hoshin V.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>202002</creationdate><title>Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing</title><author>Nearing, Grey S. ; Ruddell, Benjamin L. ; Bennett, Andrew R. ; Prieto, Cristina ; Gupta, Hoshin V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3682-cab7c073916b095c5c1fd9d61a22079834886e7b50a8eddb3cdd59425dfa592e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>epistemic uncertainty</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Information theory</topic><topic>model evaluation</topic><topic>Model testing</topic><topic>Modelling</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nearing, Grey S.</creatorcontrib><creatorcontrib>Ruddell, Benjamin L.</creatorcontrib><creatorcontrib>Bennett, Andrew R.</creatorcontrib><creatorcontrib>Prieto, Cristina</creatorcontrib><creatorcontrib>Gupta, Hoshin V.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nearing, Grey S.</au><au>Ruddell, Benjamin L.</au><au>Bennett, Andrew R.</au><au>Prieto, Cristina</au><au>Gupta, Hoshin V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing</atitle><jtitle>Water resources research</jtitle><date>2020-02</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective.
Key Points
We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable
Develop a perspective on hypothesis testing and model evaluation based on information theory</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2019WR024918</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2020-02, Vol.56 (2), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_2395337110 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | epistemic uncertainty Hypotheses Hypothesis testing Information theory model evaluation Model testing Modelling Testing |
title | Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20Information%20Theory%20Provide%20a%20New%20Paradigm%20for%20Earth%20Science?%20Hypothesis%20Testing&rft.jtitle=Water%20resources%20research&rft.au=Nearing,%20Grey%20S.&rft.date=2020-02&rft.volume=56&rft.issue=2&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2019WR024918&rft_dat=%3Cproquest_cross%3E2395337110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395337110&rft_id=info:pmid/&rfr_iscdi=true |