Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing

Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2020-02, Vol.56 (2), p.n/a
Hauptverfasser: Nearing, Grey S., Ruddell, Benjamin L., Bennett, Andrew R., Prieto, Cristina, Gupta, Hoshin V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Water resources research
container_volume 56
creator Nearing, Grey S.
Ruddell, Benjamin L.
Bennett, Andrew R.
Prieto, Cristina
Gupta, Hoshin V.
description Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective. Key Points We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable Develop a perspective on hypothesis testing and model evaluation based on information theory
doi_str_mv 10.1029/2019WR024918
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395337110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395337110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3682-cab7c073916b095c5c1fd9d61a22079834886e7b50a8eddb3cdd59425dfa592e3</originalsourceid><addsrcrecordid>eNp90E9LwzAABfAgCs7pzQ8Q8Go1f5vmJDKnGwwdtbJjSZN0y9iamXSOfnsr8-DJ07v8eA8eANcY3WFE5D1BWC5yRJjE2QkYYMlYIqSgp2CAEKMJplKcg4sY1whhxlMxAMWTtxFOm9qHrWqdb2Cxsj50cB78lzMWKvhqD3CugjJuuYW9g2MV2hV818422j7ASbfz7cpGF2FhY-ua5SU4q9Um2qvfHIKP53ExmiSzt5fp6HGWKJpmJNGqEhoJKnFaIck117g20qRYEYKEzCjLstSKiiOVWWMqqo3hkhFuasUlsXQIbo69u-A_9_12ufb70PSTJaGSUyowRr26PSodfIzB1uUuuK0KXYlR-fNb-fe3ntMjP7iN7f615SIf5YRRSeg31qNuJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395337110</pqid></control><display><type>article</type><title>Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nearing, Grey S. ; Ruddell, Benjamin L. ; Bennett, Andrew R. ; Prieto, Cristina ; Gupta, Hoshin V.</creator><creatorcontrib>Nearing, Grey S. ; Ruddell, Benjamin L. ; Bennett, Andrew R. ; Prieto, Cristina ; Gupta, Hoshin V.</creatorcontrib><description>Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective. Key Points We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable Develop a perspective on hypothesis testing and model evaluation based on information theory</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2019WR024918</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>epistemic uncertainty ; Hypotheses ; Hypothesis testing ; Information theory ; model evaluation ; Model testing ; Modelling ; Testing</subject><ispartof>Water resources research, 2020-02, Vol.56 (2), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3682-cab7c073916b095c5c1fd9d61a22079834886e7b50a8eddb3cdd59425dfa592e3</citedby><cites>FETCH-LOGICAL-a3682-cab7c073916b095c5c1fd9d61a22079834886e7b50a8eddb3cdd59425dfa592e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019WR024918$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019WR024918$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Nearing, Grey S.</creatorcontrib><creatorcontrib>Ruddell, Benjamin L.</creatorcontrib><creatorcontrib>Bennett, Andrew R.</creatorcontrib><creatorcontrib>Prieto, Cristina</creatorcontrib><creatorcontrib>Gupta, Hoshin V.</creatorcontrib><title>Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing</title><title>Water resources research</title><description>Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective. Key Points We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable Develop a perspective on hypothesis testing and model evaluation based on information theory</description><subject>epistemic uncertainty</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Information theory</subject><subject>model evaluation</subject><subject>Model testing</subject><subject>Modelling</subject><subject>Testing</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAABfAgCs7pzQ8Q8Go1f5vmJDKnGwwdtbJjSZN0y9iamXSOfnsr8-DJ07v8eA8eANcY3WFE5D1BWC5yRJjE2QkYYMlYIqSgp2CAEKMJplKcg4sY1whhxlMxAMWTtxFOm9qHrWqdb2Cxsj50cB78lzMWKvhqD3CugjJuuYW9g2MV2hV818422j7ASbfz7cpGF2FhY-ua5SU4q9Um2qvfHIKP53ExmiSzt5fp6HGWKJpmJNGqEhoJKnFaIck117g20qRYEYKEzCjLstSKiiOVWWMqqo3hkhFuasUlsXQIbo69u-A_9_12ufb70PSTJaGSUyowRr26PSodfIzB1uUuuK0KXYlR-fNb-fe3ntMjP7iN7f615SIf5YRRSeg31qNuJg</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Nearing, Grey S.</creator><creator>Ruddell, Benjamin L.</creator><creator>Bennett, Andrew R.</creator><creator>Prieto, Cristina</creator><creator>Gupta, Hoshin V.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>202002</creationdate><title>Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing</title><author>Nearing, Grey S. ; Ruddell, Benjamin L. ; Bennett, Andrew R. ; Prieto, Cristina ; Gupta, Hoshin V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3682-cab7c073916b095c5c1fd9d61a22079834886e7b50a8eddb3cdd59425dfa592e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>epistemic uncertainty</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Information theory</topic><topic>model evaluation</topic><topic>Model testing</topic><topic>Modelling</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nearing, Grey S.</creatorcontrib><creatorcontrib>Ruddell, Benjamin L.</creatorcontrib><creatorcontrib>Bennett, Andrew R.</creatorcontrib><creatorcontrib>Prieto, Cristina</creatorcontrib><creatorcontrib>Gupta, Hoshin V.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nearing, Grey S.</au><au>Ruddell, Benjamin L.</au><au>Bennett, Andrew R.</au><au>Prieto, Cristina</au><au>Gupta, Hoshin V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing</atitle><jtitle>Water resources research</jtitle><date>2020-02</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective. Key Points We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable Develop a perspective on hypothesis testing and model evaluation based on information theory</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019WR024918</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2020-02, Vol.56 (2), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2395337110
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects epistemic uncertainty
Hypotheses
Hypothesis testing
Information theory
model evaluation
Model testing
Modelling
Testing
title Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20Information%20Theory%20Provide%20a%20New%20Paradigm%20for%20Earth%20Science?%20Hypothesis%20Testing&rft.jtitle=Water%20resources%20research&rft.au=Nearing,%20Grey%20S.&rft.date=2020-02&rft.volume=56&rft.issue=2&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2019WR024918&rft_dat=%3Cproquest_cross%3E2395337110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395337110&rft_id=info:pmid/&rfr_iscdi=true