Does Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testing
Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to a...
Gespeichert in:
Veröffentlicht in: | Water resources research 2020-02, Vol.56 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Model evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspective.
Key Points
We advocate a hypothesis testing paradigm that explicitly accounts for the fact that models are not true and uncertainty is not quantifiable
Develop a perspective on hypothesis testing and model evaluation based on information theory |
---|---|
ISSN: | 0043-1397 1944-7973 |
DOI: | 10.1029/2019WR024918 |