Asymptotics of One-Dimensional Lévy Approximations

For arbitrary Borel probability measures on the real line, necessary and sufficient conditions are presented that characterize best purely atomic approximations relative to the classical Lévy probability metric, given any number of atoms, and allowing for additional constraints regarding locations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2020-06, Vol.33 (2), p.1164-1195
Hauptverfasser: Berger, Arno, Xu, Chuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For arbitrary Borel probability measures on the real line, necessary and sufficient conditions are presented that characterize best purely atomic approximations relative to the classical Lévy probability metric, given any number of atoms, and allowing for additional constraints regarding locations or weights of atoms. The precise asymptotics (as the number of atoms goes to infinity) of the approximation error is identified for the important special cases of best uniform (i.e. all atoms having equal weight) and best (i.e. unconstrained) approximations, respectively. When compared to similar results known for other probability metrics, the results for Lévy approximations are more complete and require fewer assumptions.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-019-00893-1