Global Navier–Stokes Flows for Non-decaying Initial Data with Slowly Decaying Oscillation

Consider the Cauchy problem of incompressible Navier–Stokes equations in R 3 with uniformly locally square integrable initial data. If the square integral of the initial datum on a ball vanishes as the ball goes to infinity, the existence of a time-global weak solution has been known. However, such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2020-05, Vol.375 (3), p.1665-1715
Hauptverfasser: Kwon, Hyunju, Tsai, Tai-Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the Cauchy problem of incompressible Navier–Stokes equations in R 3 with uniformly locally square integrable initial data. If the square integral of the initial datum on a ball vanishes as the ball goes to infinity, the existence of a time-global weak solution has been known. However, such data do not include constants, and the only known global solutions for non-decaying data are either for perturbations of constants, or when the velocity gradients are in L p with finite p . In this paper, we construct global weak solutions for non-decaying initial data whose local oscillations decay, no matter how slowly.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-020-03695-3