Low-latency hand gesture recognition with a low resolution thermal imager
Using hand gestures to answer a call or to control the radio while driving a car, is nowadays an established feature in more expensive cars. High resolution time-of-flight cameras and powerful embedded processors usually form the heart of these gesture recognition systems. This however comes with a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using hand gestures to answer a call or to control the radio while driving a car, is nowadays an established feature in more expensive cars. High resolution time-of-flight cameras and powerful embedded processors usually form the heart of these gesture recognition systems. This however comes with a price tag. We therefore investigate the possibility to design an algorithm that predicts hand gestures using a cheap low-resolution thermal camera with only 32x24 pixels, which is light-weight enough to run on a low-cost processor. We recorded a new dataset of over 1300 video clips for training and evaluation and propose a light-weight low-latency prediction algorithm. Our best model achieves 95.9% classification accuracy and 83% mAP detection accuracy while its processing pipeline has a latency of only one frame. |
---|---|
ISSN: | 2331-8422 |